Книга: Общая химия

15. Важнейшие классы и номенклатура неорганических веществ.

<<< Назад
Вперед >>>

15. Важнейшие классы и номенклатура неорганических веществ.

Все вещества делятся на простые (элементарные) и сложные. Простые вещества состоят из одного элемента, в состав сложных входит два или более элементов. Простые вещества, в свою очередь, разделяются на металлы и неметаллы или металлоиды*.

Металлы отличаются характерным «металлическим» блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.

Неметаллы не обладают характерным для металлов блеском, хрупки, очень плохо проводят теплоту и электричество. Некоторые из них при обычных условиях газообразны.

Сложные вещества делят на органические и неорганические: органическими принято называть соединения углерода**; все остальные вещества называются неорганическими (иногда минеральными).

Неорганические вещества разделяются на классы либо по составу (двухэлементные, или бинарные, соединения и многоэлементные соединения; кислородсодержащие, азотсодержащие и т.п.), либо по химическим свойствам, т.е. по функциям (кислотно-основным, окислительно-восстановительным и т.д.), которые эти вещества осуществляют в химических реакциях, - по их функциональным признакам.

К важнейшим бинарным соединениям относятся соединения элементов с кислородом (оксиды), с галогенами (галогениды или галиды), азотом (нитриды), углеродом (карбиды) , а также соединения металлических элементов с водородом (гидриды). Их названия образуются из латинского корня названия более электроотрицательного *** элемента с окончанием ид и русского названия менее электроотрицательного элемента в родительном падеже, причем в формулах бинарных соединений первым записывается символ менее электроотрицательного элемента****.

* Название «металлоиды» было введено в химию Берцелиусом (1808 г.) для обозначения простых веществ неметаллического характера. Это название неудачно, так как «металлоид» в буквальном переводе означает «металлоподобный»

** Простейшие соединения углерода (CO, CO2, H2CO4 и карбонаты, HCN и цианиды, карбиды и некоторые другие) обычно рассматриваются в курсе неорганической химии.

*** О понятии «электроотрицательность» см. § 40.

**** К важнейшим исключениями из последнего правила относятся соединения азота с водородом — аммиак NH3 и гидразин N2H4, в которых первым принято записывать символ более электроотрицательного азота.

- 38 -

 Например, Ag2O — оксид серебра,  OF2 — фторид кислорода (фтор — более электроотрицательный элемент, чем кислород), KBr — бромид калия, Mg3N2 — нитрид магния, CaC2 -карбид кальция (однако названия водородных соединений неметаллов. Обладающих свойствами кислот, образуются по правилам, принятым для кислот, - см. ниже). Если менее электроотрицательный элемент может находиться в разных окислительных состояниях, то после его названия в скобках указывают римскими цифрами степень его окисленности.  Так, Cu2O — оксид меди(I), CuO — оксид меди(II), CO — оксид углерода(II), CO2 — оксид углерода(IV), SF6 — фторид серы (VI). Можно также вместо степени окисленности указывать с помощью греческих числительных приставок (моно, ди, три, пента, гекса и т.д.) число атомов более электроотрицательного элемента в формуле соединения: CO — монооксид углерода (приставку «моно» часто опускают), CO2 — диоксид углерода, SF6 — гексафторид серы.

По функциональным признакам оксиды подразделяются на солеобразующие и несолеобразующие (безразличные). Солеобразующие оксиды, в свою  очередь, подразделяются на основные, кислотные и амфотерные.

Основными называются оксиды, взаимодействующие с кислотами (или с кислотными оксидами) с образованием солей. Присоединяя (непосредственно или косвенно) воду, основные оксиды образуют основания. Например, оксид кальция CaO реагирует с водой, образуя гидроксид кальция  Ca(OH)2:

CaO + H2O = Ca(OH)2

Оксид магния MgO — тоже основной оксид. Он малорастворим в воде, но ему соответствует основание — гидроксид магния Mg(OH)2, который можно получить из MgO косвенным путем.

Кислотными называются оксиды, взаимодействующие с основаниями (или с основными оксидами) с образованием солей. Присоединяя (непосредственно или косвенно) воду, кислотные оксиды образуют кислоты. Так, триоксид серы SO3 взаимодействует с водой, образуя серную кислоту H2SO4:

SO3 + H2O = H2SO4

Диоскид кремния SiO2 — тоже кислотный оксид. Хотя он не взаимодействует с водой, ему соответствует кремниевая кислота H2SiO3 которую можно получить из SiO2 косвенным путем.

Один из способов получения кислотных оксидов — отнятие воды от соответствующих кислот. Поэтому кислотные оксиды иногда называют ангидридами кислот.

Амфотерными называются оксиды, образующие соли при взаимодействии как с кислотами, так и с основаниями. К таким оксидам относятся, например, Al2O3, ZnO, PbO2, Cr2O3. Явление амфотерности рассматривается в § 87.

Несолеобразующие оксиды, как видно из их названия, не способны взаимодействовать с кислотами или основаниями с образованием солей. К ним относятся N2O, NO и некоторые другие оксиды.

- 39 -

Существуют вещества — соединения элементов с кислородом, которые, относясь по составу к классу оксидов, по строению и свойствам относятся к классу солей. К таким веществам принадлежат, в частности, пероксиды металлов — например, пероксид бария BaO2. По своей природе пероксиды представляют собой соли очень слабой кислоты — пероксида (перекиси) водорода H2O2 (см. § 117). К солеобразным соединениям относятся и такие вещества, как Pb2O3 и Pb3O4 (§ 188).

Среди много элементных соединений важную группу составляют гидроксиды — вещества, содержащие гироксогруппы OH. Некоторые из них (основные гидроксиды) проявляют свойства оснований NaOH, Ba(OH)2 и т.п.; другие (кислотные гидроксиды) проявляют свойства кислот — HNO3, H3PO4 и др.; существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как основные, так и кислотные свойства, - Zn(OH)2 Al(OH)3 и т.п. Кислотные гидроксиды называются по правилам, установленным для кислот (см. ниже). Названия основных гидроксидов составляются из слова «гидроксид» и русского названия элемента в родительном падеже с указанием, если необходимо, степени окисленности элемента (римскими цифрами в скобках). Например, LiOH — гидроксид лития, Fe(OH)2 — гидроксид железа (II). Растворимые основные гидроксиды называются щелочами; важнейшие щелочи — гидроксид натрия NaOH2 гидроксид калия KOH, гидроксид кальция Ca(OH)2.

К важнейшим классам неорганических соединений, выделяемым по функциональным признакам, относятся кислоты, основания и соли.

Кислотами с позиций теории электролитической диссоциации (§ 82 и 87) называются вещества, диссоциирующие в растворах с образованием ионов водорода. С точки зрения протонной теории кислот и оснований (§ 87) к кислотам относятся вещества, способные отдавать ион водорода, т.е. быть донорами протонов.

Наиболее характерное химическое свойство кислот — их способность реагировать с основаниями (а также с основными и амфотерными оксидами) с образованием солей, например:

H2SO4 + 2Na2OH = Na2SO4 + 2H2O

2HNO3 + FeO = Fe(NO3)2 + H2O

2HCl + ZnO = ZnCl2 + H2O

Кислоты классифицируют по их силе, по основности и по наличию или отсутствию кислорода в составе кислоты. По силе кислоты делятся на сильные и слабые (§ 84). Важнейшие сильные кислоты — азотная HNO3, серная H2SO4 и соляная HCl. По наличию кислорода различают кислородсодержащие кислоты (HNO3, H3PO4 и т.п.) и бескислородные кислоты (HCl, H2S,  HCN и т.п. )

- 40 -

По основности, т.е. по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли, кислоты подразделяют на одноосновные ( например, HCl, HNO3), двухосновные (H2S, H2SO4), трехосновные (H3PO4) и т.д.

Названия бескислородных кислот составляют, добавляя к корню русского названия кислотообразующего элемента (или к названию группы атомов, например CN — циан) суффикс о и окончание водород:  HCl — хлороводород, H2Se — селеноводород,  HCN — циановодород.

Названия кислородсодержащих кислот также образуются от русского названия соответствующего элемента с добавлением слова «кислота». При этом название кислоты, в которой элемент находится в высшей степени окисленности, оканчивается на ная или овая; например, H2SO4 — серная кислота, HClO4 — хлорная кислота, H3AsO4 — мышьяковая кислота. С понижением степени окисленности кислотообразующего элемента окончания изменяются в следующей последовательности: оватая (HClO3 — хлорноватая кислота), истая (PClO2 — хлористая кислота), оватистая (HOCl — хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисленности, то название кислоты, отвечающее низшей степени окисленности элемента, получает окончание истая ( HNO3  - азотная кислота, HNO2 — азотистая кислота).

Одному и тому же кислотному оксиду (например, P2O5) могут соответствовать несколько кислот, содержащих по одному атому данного элемента в молекуле (например HPO3 и H3PO4). В подобных случаях к названию кислоты, содержащей наименьшее число атомов кислорода, добавляется приставка  мета, а к названию кислоты, содержащей наибольшее число атомов кислорода — приставка орто (HPO3 - мета фосфорная кислота, H3PO4 — ортофосфорная кислота). Если же молекула кислоты содержит несколько атомов кислотообразующего элемента, то название кислоты снабжается соответствующей русской числительной приставкой; например, H4P2O7 — двуфосфорная кислота, H2B4O7 — четырехборная кислота.

Некоторые кислоты содержат в своем составе группировку атомов —O—O— . Такие кислоты рассматриваются как производные пероксида водорода и называются преоксокислотами ( старое название — надкислоты). Названия подобных кислот снабжаются приставкой пероксо и, если необходимо, русской числительной приставкой, указывающей число атомов кислотообразующего элемента в молекуле кислоты; например H2SO5 — пероксосерная кислота, H2S2O8 — пероксодвусерная кислота.

Основаниями с позиций теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов, т.е. основные гидроксиды.

Наиболее характерное химическое свойство оснований — их способность взаимодействовать с кислотами (а также с кислотными и амфотерными оксидами) с образованием солей, например:

KOH + HCl = KCl + H2O

Ca(OH)2 + CO2 = CaCO3 + H2O

2NaOH + ZnO = Na2ZnO2 + H2O

- 41 -

С позиций протонной теории кислот и оснований (§ 87) к основаниям относятся вещества, способные присоединять ионы водорода, т.е. быть акцепторами протонов. С этой точки зрения к основаниям относится, например, аммиак, который, присоединяя протон, образует аммоний-ион NH4+. Подобно основным гидроксидам аммиак взаимодействует с кислотами, образуя соли, например:

2NH3 + H2SO4 = (NH4)2SO4

В зависимости от числа протонов, которые может присоединить основание, различают однокислотные основания (LiOH, KOH, NH3 и т.п.), двукислотные [Ba(OH)2, Fe(OH)2] и т.д. По силе основания делятся на сильные и слабые (§ 84); к сильным основаниям относятся все щелочи.

К солям относятся вещества, диссоциирующие в растворах с образованием положительно заряженных ионов, отличных от ионов водорода, и отрицательно заряженных ионов, отличных от гидроксид-ионов. Соли можно рассматривать как продукты замещения атомов водорода в кислоте атомами металлов (или группами атомов, например, группой атомов NH4) или как продукты замещения гидроксогрупп в основном гидроксиде кислотными остатками. При полном замещении получаются средние (или нормальные) соли. При неполном замещении водорода кислоты получаются кислые соли, при неполном замещении гидроксогрупп основания — основные соли. Ясно, что кислые соли могут быть образованы только кислотами, основность которых равна двум или больше, а основные соли — гидроксидами, содержащими не менее двух гидроксогрупп.

Примеры образования солей:

Ca(OH)2 + H2SO4 = CaSO4 + 2H2O

CaSO4  (сульфат кальция) — нормальная соль;

KOH + H2SO4 = KHSO4 + H2O

KHSO4 (гидросульфат калия) — кислая соль;

Mg(OH)2 + HCl = Mg(OH)Cl + H2O

Mg(OH)Cl (хлорид гидроксомагния) — основная соль.

Соли, образованные двумя металлами и одной кислотой, называются двойными солями; соли, образованные одним металлом и двумя кислотами, смешанными солями. Примером двойной соли может служить сульфат калия-алюминия (алюмокалиевые квасцы) KAl(SO4)2 ·12H2O. К смешанным солям относится, например, хлорид-гипохлорит кальция CaCl(OCl) (или CaOCl2) — кальциевая соль соляной (HCl) и хлорноватистой (HOCl) кислот.

Согласно современным номенклатурным правилам, названия солей образуются из названия аниона в именительном падеже и названия катиона в родительном падеже. Название аниона состоит из корня латинского наименования кислотообразующего элемента, окончания и, если необходимо, приставки (см. ниже).

- 42 -

Для названия катиона используется русское наименование соответствующего металла или группы атомов; при этом, если необходимо, указывают (в скобках римскими цифрами) степень окисленности металла.

Анионы бескислородных кислот называются по общему ля бинарных соединений правилу, т.е. получают окончание ид. Так, NH4F — фторид аммония, SnS — сульфид олова(II), NaCN — цианид натрия. Окончания названий кислородсодержащих кислот зависят от степени окисленности кислотообразующего элемента. Для высшей его степени окисленности («...ная» или «...овая» кислота) применяется окончание ат; например, соли азотной кислоты HNO3 называются нитратами, серной кислоты H2SO4 — сульфатами, хромовой кислоты H2CrO4 — хроматами. Для более низкой степени окисленности («...истая» кислота) применяется окончание ит; так, соли азотной кислоты HNO2 называются нитритами, серной кислоты H2SO4 — сульфитами. Если элемент образует кислоты, находясь в еще более низкой степени окисленности («...оватистая» кислота), то название аниона этой кислоты получает приставку гипо и окончание ит; например, соли хлорноватистой кислоты HOCl называются гипохлоритами.

К названиям анионов кислот, содержащих несколько атомов кислотобразующего элемента, добавляются греческие числительные приставки, указывающие число этих атомов. Так, соли двусерной кислоты H2S2O7 называются дисульфатами, четырехборной кислоты H2B4O7 — тетраборатами.

Названия анионов пероксокислот образуют с помощью приставки пероксо; соли пероксосерной кислоты  H2SO5 — пероксосульфамы, соли пероксодвусерной кислоты  H2S2O8 — пероксодисульфаты — и т.д.

Названия кислых и основных солей образуются по тем же общим правилам, что и названия средних солей. При этом название аниона кислой соли снабжают приставкой гидро, указывающей на наличие незамещенных атомов водорода; если таких атомов два или больше, то их число указывают греческими числительными приставками. Так, Na2HPO4 — гидрофосфат натрия, NaH2PO4  дигидроортофосфат натрия. Аналогично катион основной соли получает приставку гидрокосо, указывающую на наличие незамещенных гидроксогрупп. Например, Al(OH)Cl2 — хлорид гидроксоалюминия, Al(OH)2Cl — хлорид дигидроксоалюминия.

По исторически сложившейся традиции для солей хлорной (HClO4), йодной  (HIO4) и марганцовой (HMnO4) кислот применяют названия, отличающиеся от систематических: их называют соответственно перхлоратами, периодатами и перманганатами. Поэтому отличаются от систематических и общеупотребительные называния солей хлорноватой (HClO3), йодноватой (HIO3) и марганцовистой (H2MnO4) кислот (соответственно — хлораты, иодаты и манганаты).

- 43 -

Ниже приведены названия солей важнейших кислот:


<<< Назад
Вперед >>>

Генерация: 3.102. Запросов К БД/Cache: 3 / 1
Вверх Вниз