Книга: Достучаться до небес: Научный взгляд на устройство Вселенной

ЧТО ТАМ, ЗА СТАНДАРТНОЙ МОДЕЛЬЮ? ПОМОЖЕТ ЛИ БАК ПОЛУЧИТЬ ОТВЕТ НА ЭТОТ ВОПРОС?

<<< Назад
Вперед >>>

ЧТО ТАМ, ЗА СТАНДАРТНОЙ МОДЕЛЬЮ? ПОМОЖЕТ ЛИ БАК ПОЛУЧИТЬ ОТВЕТ НА ЭТОТ ВОПРОС?

Стандартная модель элементарных частиц учит нас делать верные предсказания о легких частицах, из которых все мы состоим. Она также описывает другие, более тяжелые частицы с аналогичными взаимодействиями. Эти тяжелые частицы взаимодействуют с легкими частицами и с атомными ядрами посредством тех же самых взаимодействий, которые действуют на частицы, составляющие наши тела и нашу Солнечную систему.

Физикам известно об электроне и о более тяжелых, но аналогичных заряженных частицах, которые называются мюон и тау–лептон. Мы знаем, что каждая из этих частиц, известных под общим именем лептоны, имеет парную нейтральную частицу (то есть частицу без заряда, которая не участвует непосредственно в электромагнитных взаимодействиях) под названием нейтрино; все нейтрино взаимодействуют с другими частицами только посредством силы с прозаическим названием слабое взаимодействие. Именно слабым взаимодействием объясняются радиоактивный бета–распад нейтронов с образованием протонов (а также бета–распад атомных ядер в целом) и некоторые ядерные процессы, протекающие в глубинах Солнца. Все вещество Стандартной модели подвержено слабому взаимодействию.

Нам известно также о кварках, обнаруженных внутри протонов и нейтронов. Кварки подвержены как слабому, так и электромагнитному взаимодействию, а также сильному взаимодействию, которое удерживает легкие кварки вместе внутри протонов и нейтронов. Сильное взаимодействие ставит перед нами некоторые вычислительные проблемы, но базовую его структуру мы себе представляем.

Кварки и лептоны вместе с сильным, слабым и электромагнитным типами взаимодействия составляют суть Стандартной модели (рис. 23). До сих пор этих ингредиентов хватало, чтобы успешно предсказывать результаты всех экспериментов с элементарными частицами. Мы очень хорошо понимаем и частицы Стандартной модели, и то, как работают задействованные в ней силы.

Остается, однако, немало серьезных вопросов и загадок.

Основная проблема здесь — как вписывается во всю эту систему гравитация. Это главный вопрос, в котором БАК имеет некоторый шанс разобраться, но который он вовсе не обязательно решит. Энергия БАКа — достаточно высокая как с точки зрения того, что нам прежде удавалось достичь на Земле, так и по отношению к решению некоторых других крупных вопросов из этого списка — слишком низка, чтобы наверняка получить ответы на вопросы, имеющие отношение к квантовой гравитации. Для этого нам пришлось бы изучить те бесконечно малые расстояния, где могут проявиться и квантово–механические, и гравитационные эффекты, а эти расстояния выходят далеко за пределы возможностей проекта БАКа. Если нам повезет и окажется, что гравитация играет существенную роль в проблемах частиц, которыми мы вскоре займемся, то нам будет гораздо проще искать ответ на этот вопрос, а БАК, возможно, станет источником важной информации о гравитации и пространстве. В противном случае экспериментальной проверки любой квантовой теории гравитации, включая и теорию струн, придется, скорее всего, ждать еще долго.


РИС. 23. Элементы Стандартной модели элементарных частиц, описывающей самые фундаментальные из известных элементов вещества и их взаимодействия. Кварки верхнего и нижнего ряда участвуют в сильном, слабом и электромагнитном взаимодействиях. Заряженные лептоны участвуют в слабом и электромагнитном взаимодействиях, тогда как нейтрино участвуют только в слабом взаимодействии. Глюоны, слабые калибровочные бозоны и фотоны передают эти взаимодействия. Бозон Хиггса по состоянию на 2010 г. еще только предстояло обнаружить

Однако отношение гравитационного взаимодействия к другим типам взаимодействий — не единственный серьезный вопрос, на который у нас до сих пор нет ответа. Еще один важный пробел в наших знаниях — причем такой, что БАК, по идее, может его заполнить — это вопрос о том, откуда берутся массы фундаментальных частиц.

Вероятно, на первый взгляд такой вопрос кажется странным (если только вы не читали моей первой книги): ведь мы обычно представляем себе массу как некую данность, изначальное и неотъемлемое свойство частицы. В определенном смысле это правда. Масса — это одно из свойств, определяющих тип частицы (вместе с зарядом и типами взаимодействий). Любая частица несет ненулевую энергию, но масса — это изначально присущее частице свойство, которое может принимать разные значения, в том числе и нулевое. Одна из главных заслуг Эйнштейна заключается в выводе о том, что масса частицы говорит, сколько энергии имеет эта частица в состоянии покоя. Но частицы не всегда имеют неисчезающую массу, а те, что имеют нулевую массу покоя, как фотон, никогда в покое не находятся.

Однако ненулевые массы элементарных частиц, присущие им изначально, — громадная загадка. Ненулевую массу имеют не только кварки и лептоны, но и «слабые» калибровочные бозоны — частицы, передающие слабое взаимодействие. Экспериментаторы сумели измерить эти массы, но согласно простейшим законам физики их просто не должно быть. Предсказания Стандартной модели «работают», если мы просто примем эти массы как данность. Но мы не знаем, откуда они берутся. Ясно, что простейшие законы здесь неприменимы и что в данном случае действуют другие, более сложные правила.

Специалисты по физике элементарных частиц считают, что неисчезающие массы возникают только потому, что в самом начале истории нашей Вселенной произошло что?то серьезное и имел место процесс, получивший название механизма Хиггса в честь шотландского физика Питера Хиггса, который одним из первых показал, как могли возникнуть эти массы. Аналогичные мысли, правда, высказали тогда по крайней мере шесть авторов, так что иногда можно услышать и о механизме Энглерта — Браута — Хиггса — Гуральника — Хагена — Киббла; я буду в дальнейшем придерживаться варианта с одним именем[27]. Идея (как бы мы ее ни называли) заключается в том, что имел место фазовый переход (похожий, возможно, на фазовый переход кипящей воды в газообразный пар)[28], изменивший ни много ни мало природу Вселенной. Если в самом начале частицы не имели массы и носились повсюду со скоростью света, то позже — после фазового перехода с участием так называемого поля Хиггса — они уже обладали массой и летали медленнее. Механизм Хиггса говорит о том, как элементарные частицы видоизменились от нулевой массы при отсутствии поля Хиггса к ненулевой массе, которую мы можем измерить экспериментально.

Если физики правы и во Вселенной действительно действует механизм Хиггса, то БАК покажет характерные признаки, которые позволят судить о прошлом Вселенной. В простейшем варианте свидетельством должна стать частица — бозон, названный в честь Хиггса. В более сложных физических теориях, где тем не менее действует указанный механизм, бозон Хиггса может сопровождаться другими частицами примерно той же массы или заменяться какой?то совершенно иной частицей.

Независимо от того, как реализуется механизм Хиггса, мы ждем от БАКа новых интересных открытий. Это может быть бозон Хиггса. Это могут быть свидетельства в пользу другой, более экзотической теории, такой как теория техноцвета, о которой мы поговорим позже. Или это может оказаться что?то совершенно неожиданное. Если все пойдет по плану, эксперименты на БАКе помогут установить, что запустило механизм Хиггса. Но вне зависимости от того, что именно будет обнаружено, это открытие сможет рассказать нам немало интересного о том, как частицы обрели массу.

Стандартная модель элементарных частиц, описывающая самые фундаментальные элементы вещества и их взаимодействия, прекрасно работает. Ее предсказания уже не раз подтверждались с высокой точностью. Не обнаруженная пока частица Хиггса — последняя деталь нашей головоломки[29]. Сегодня мы говорим, что частицы обладают массой. Разобравшись в механизме Хиггса, мы узнаем, откуда взялась у частиц масса. Механизм Хиггса, о котором мы поговорим подробнее в главе 16, очень важен для глубокого понимания массы.

В физике элементарных частиц существует еще одна, даже более крупная загадка, в решении которой БАК вполне может сыграть важную роль. Возможно, что эксперименты на коллайдере помогут осветить вопрос, известный как проблема иерархии в физике элементарных частиц. Если механизм Хиггса имеет отношение к вопросу о том, почему частицы обладают массой, то проблема иерархии задает другой вопрос: почему эти массы именно таковы?

В физике элементарных частиц считается, что массы возникают из?за так называемого поля Хиггса, которое пронизывает Вселенную; кроме того, считается, что нам известна энергия, при которой произошел переход от частиц, не обладающих массой, к частицам массивным. Дело в том, что механизм Хиггса придает некоторым частицам массу вполне предсказуемым образом, который зависит только от силы слабого взаимодействия и от энергии, при которой происходит переход.

Странность в том, что эта энергия перехода с точки зрения фундаментальной теории представляется бессмысленной. Если сложить все, что мы знаем из квантовой механики и специальной теории относительности и вычислить на основании этих данных массу частиц, то расчетные величины окажутся намного больше тех, что измерены экспериментально. По расчетам на основе квантовой механики и специальной теории относительности массы частиц (если не найдется новой, более подходящей теории) должны быть намного больше — ни много ни мало в 10 квадрильонов, или 1016, раз больше. Теория держится лишь за счет огромной «заплатки», которую физики, ничуть не смущаясь, назвали «тонкой подстройкой».

Проблема иерархии в физике элементарных частиц представляет собой одну из величайших проблем фундаментальной теории вещества. Мы хотим знать, почему массы частиц настолько отличаются от ожидаемых. Из квантово–механических расчетов следует, что их массы должны выходить далеко за пределы масштаба слабых взаимодействий, которые, вообще говоря, эти массы определяют. Мы не в состоянии понять масштаб слабых энергий в совсем несложной, казалось бы, версии Стандартной модели, и это очень серьезное препятствие к созданию полной законченной теории.

Существует вероятность, что нынешнюю весьма наивную модель когда?нибудь сменит более интересная, тонкая и точная теория; физикам такая перспектива представляется куда более убедительной, чем разговоры о тонкой настройке теории и, соответственно, научного взгляда на мир. Несмотря на то что решение проблемы иерархии представляется весьма амбициозной задачей, БАК, скорее всего, сможет пролить на нее свет. Квантовая механика и теория относительности задают не только вклад в массу частицы, но и энергию, при которой должны появиться (или, скорее, проявиться) новые явления. В данном случае речь идет как раз о том диапазоне энергий, с которым будет работать БАК.

Ожидается, что именно эксперименты на БАКе помогут появиться новой интересной теории. Этой теории — а она обязательно попытается объяснить загадки, связанные с массами частиц — по идее следовало бы появиться в тот момент, когда будут обнаружены новые частицы, силы или симметрии. Вообще, это одна из самых серьезных загадок, решению которых, как мы надеемся, будут способствовать эксперименты на женевском коллайдере.

Ответ на этот вопрос интересен и сам по себе, но важно еще и то, что он, возможно, окажется ключом к другим, еще более глубоким тайнам природы. Два наиболее убедительных возможных ответа предполагают либо расширение набора симметрий пространства и времени, либо пересмотр наших представлений о пространстве.

В сценариях, которые будут разъяснены более подробно в главе 17, говорится, что пространство может содержать больше, чем три известных нам измерения. В частности, в нем, возможно, имеются совершенно невидимые измерения, в которых заключен ключ к пониманию свойств и масс элементарных частиц. Если это на самом деле так, то БАК поможет ученым доказать это: в экспериментах на коллайдере будут получены свидетельства их существования — так называемые частицы Калуцы — Клейна, путешествующие в полном многомерном пространстве–времени.

Пока же ясно одно: какая бы из теорий ни разрешила проблему иерархии, она должна обеспечить экспериментально доступные доказательства тому в масштабе слабых энергий. Цепочка логически безупречных рассуждений свяжет находки, сделанные на БАКе, с теорией, которая в конечном итоге решит проблему иерархии. Эта теория может оказаться одной из уже предложенных или совершенно неожиданной, но, так или иначе, она должна быть убедительной и безумно интересной.

<<< Назад
Вперед >>>

Генерация: 0.325. Запросов К БД/Cache: 0 / 0
Вверх Вниз