Книга: Чем мир держится?

Старые законы, новые законы

<<< Назад
Вперед >>>

Старые законы, новые законы

Общая теория относительности вот уже шесть с лишним десятков лет с успехом отбивает любые нападки.

Следует ли из этого, что все с тяготением и его теорией ясно, желать больше нечего, все коренные проблемы разрешены? Мы уже знаем, что о загадке тяготения можно говорить лишь в том же смысле, в каком мы говорим о загадке электромагнетизма или загадке атомного ядра. Но и на этом уровне загадка остается загадкой. Теория относительности — не фетиш, который нельзя трогать. В сущности, ни одну естественнонаучную теорию, ни один физический закон, строго говоря, нельзя считать исчерпывающе доказанными. Как бы мы тщательно ни проверяли факты, относящиеся к содержанию теории, как бы ни стремились сверить все и вся подлежащее действию закона — наше доказательство никогда не будет законченным, завершенным. Д. Томсон в своей книге «Дух науки» категорически утверждает: «Логически доказать теорию никак нельзя, так как никто не может проделать всех мыслимых экспериментов, которые она охватывает».

Есть такой афоризм: теорию проверяют до тех пор, пока не установят, что она неверна.

Можно сказать и иначе. Теорию проверяют до тех пор, пока не обнаружат, где она неверна.

Всегда познавайте предмет в противоречиях… Вы обнаружите при этом, что существует постоянный заговор, имеющий целью преподать тот же предмет догматически и односторонне.

Бернард Шоу

Закон всемирного тяготения Ньютона царил безраздельно в нашем мире в течение четверти тысячелетия. Да и сейчас не отменен — законы природы не отменяют! — а просто «понижен в ранге»: во-первых, признается верным не для всех возможных ситуаций, во-вторых, признан проявлением свойств материи и пространства-времени, открытых общей теорией относительности (как законы Кеплера — только проявление этого закона Ньютона).

Так демонстрирует себя один из принципов развития науки — принцип соответствия. Движется вперед наука, и новая теория в ней приходит на смену старой, но каждый раз теория-победительница не просто изгоняет свою предшественницу, а хотя бы частично включает ее в себя, если хотите, как заслуженный трофей. Законы новой теории в определенных условиях переходят в законы старой, полностью совпадают с ними. Формула Ньютона по-прежнему верна для гравитационных пар Солнце — Земля и Земля — Луна, хотя луч звезды, скользнувший вблизи Солнца, так же как и перигелий Меркурия, уклонились от точного следования старому закону всемирного тяготения в его Ньютоновой форме.

Какой бы ни была и чье бы имя ни носила будущая теория тяготения, она включит в себя и общую теорию относительности.

На первый взгляд кажется, что теории живут всего лишь день и что их руины громоздятся на руинах. Но есть в них и нечто длящееся. Если какая-нибудь из них раскрыла нам некоторое истинное отношение, то это отношение приобретено на все времена. В новом облачении мы его снова обнаружим в других теориях, которые одна за другой будут торжествовать на месте прежней.

Анри Пуанкаре

Мы уже как будто знаем в нашей Вселенной явления, которые, с одной стороны, безусловно подлежат ведению теории тяготения и в то же время, с другой стороны, не могут быть описаны и объяснены с помощью аппарата общей теории относительности.

Советский академик В. Л. Гинзбург в одном из своих выступлений отметил несомненную, по его мнению, «неприменимость обычных (классических) уравнении общей теории относительности при сверхвысоких плотностях…»

Впрочем, нельзя фетишизировать и принцип соответствия — он относится только к «хорошо проверенным» теориям, а критерий именно хорошей проверки трудно выработать для всех возможных случаев. Вспомним хотя бы теплород средневековья, теорию приливов Галилея, теорию приливов Декарта, наконец, теории Аристотеля для падения тел и движения их. Все это заняло свое почетное место в истории науки — в истории, а не в самой науке.

Дж. Дж. Томсон, человек, открывший электрон, писал: «Великое открытие — это не конечная станция, а скорее дорога, ведущая в области, до сих пор неизвестные. Мы взбираемся на вершину пика, и нам открывается другая вершина, еще более высокая, чем мы когда-либо видели до сих пор, и так продолжается дальше. Вклад, сделанный в понимание физики одним поколением, не становится меньшим или менее глубоким или менее революционным по мере того, как одно поколение сменяет другое. Сумма нашего знания не похожа на то, что математики называют сходящимися рядами… где изучение нескольких членов позволяет понять общие свойства целого. Физика соответствует скорее другому типу рядов, рядам расходящимся, где добавляемые члены не становятся все меньше и меньше и где нельзя считать, что выводы, к которым мы пришли при изучении нескольких известных членов, совпадут с теми, которые мы сделаем, когда наши знания будут больше».

Произойдет ли, и когда, если произойдет, новая революция в физике, подобная той, которая началась с появления теории Максвелла, а завершилась сформированием квантовой механики и общей теории относительности? Этот вопрос часто поднимается в наше время.

Есть ученые, которые полагают, что время новой физической революции вот-вот наступит и даже что она, возможно, уже начинается. Другие откладывают физическую революцию на неопределенный срок или даже считают, что дальнейшее развитие науки не обещает тут резких скачков в познании, что предстоит медленная и постепенная эволюция, а ломки наших взглядов на глубинное строение материи не предвидится.

Часть астрономов и физиков настаивает на том, что мы уже сейчас наблюдаем в космосе явления, объяснить которые можно только действием таких законов природы, какие нам еще неизвестны. Их оппоненты признают, что в природе существуют законы, нам неизвестные, однако считают, что пока все, наблюдаемое в космосе, хорошо объясняется законами уже известными.

И та и другая позиция, безусловно, заслуживают уважения. Они серьезны.

Другое тело, что одинаково противопоказаны развитию научных идей крайние точки зрения: и легкомысленное отбрасывание уже накопленного огромного запаса знаний о мире, и провозглашение сегодняшнего состояния науки — окончательным, приписывание нынешней науке всеведения.

Никто так не ошибался в своих предсказаниях, как пророки ограниченности человеческого знания.

Климент Тимирязев

Сейчас большинство физиков, исследующих гравитацию, придерживается общей теории относительности, порядком постаревшей, но не устаревшей и бурно развивающейся. Конечно, есть у этой теории конкурентки, другие теории тяготения. Но сторонники геометродинамики Эйнштейна чувствуют себя очень уверенно. Авторы трехтомного труда «Гравитация», вышедшего на русском языке в 1977 году, уже известные нам Мизнер, Торн и Уилер полагают, что в теориях-конкурентках нуждается сама теория относительности, нуждается примерно так же, как красавица — в подругах-дурнушках, на фоне которых ее прелести только выигрывают. Или как рыцарь на турнире нуждается в соперниках, чтобы в победных схватках все более изощрять свое умение владеть оружием. Авторы книги слегка кокетничают: «Эксперимент проводился за экспериментом, и одна за другой отпадали гравитационные теории, становясь жертвами наблюдений, а эйнштейновская теория осталась непоколебимой…

Вопрос: зачем в таком случае заниматься изучением других теорий гравитации? Ответ: чтобы с чем-то сравнивать эйнштейновскую теорию при ее проверке и более конкретно оттенять ее преимущества».

Трое физиков пропели настоящий гимн в честь геометродинамики Эйнштейна, продержавшейся вопреки всем атакам более шестидесяти лет.

В разное время рядом с нею возникали десятки других теорий гравитации, жили бок о бок, развивались, честно служили науке, делали предсказания — и в большинстве случаев уходили в Лету, потому ли, что им не хватало жизненной силы для борьбы на равных, или потому, что новые факты разрушали прочные с виду построения.

«Жизнеспособность научной теории» — это точный термин, и как всякий термин, он имеет точное определение. Школьник, чтобы перейти во второй класс, как минимум должен уметь читать, писать и считать до двадцати. Теория гравитации (как и всякая другая физическая теория) должна, чтобы ее признали жизнеспособной, чтобы к ней относились именно как к теории научной, отвечать трем критериям, удовлетворять трем условиям.

Первое из них — самосогласованность. Теория не должна приводить к резко противоречащим друг другу выводам.

Второе условие выполнить еще труднее. «Перво-принципы» и фундаментальные законы теории должны давать возможность вычислить на их основе движение сложных систем и проанализировать результаты любого эксперимента, имеющего отношение к проблемам гравитации в самом широком понимании, плюс еще теория должна быть согласована с законами всех остальных областей физики.

Третье условие кажется простым и естественным даже на первый взгляд: теория должна «соглашаться» со всеми уже проведенными ранее экспериментами, должна объяснять все, что мы успели узнать у природы прямым опытом. Бывает, что уже при рождении теория оказывается неспособна полностью соответствовать фактам; чаще это выясняется позже. Теория гравитации блестящего английского физика Уайтхеда некоторое время процветала и заслужила было общее уважение физиков. Но ее же самой дальнейшая разработка вдруг выяснила, что если бы природа следовала Уайтхеду, то в земных океанах каждые двенадцать часов происходили приливы и отливы, вызванные притяжением Галактики. Поскольку этого на самом деле нет, теория Уайтхеда не удержалась.

Физическая теория подобна костюму, сшитому для природы. Хорошая теория подобна хорошо сшитому костюму, а плохая — Тришкину кафтану.

Яков Френкель

Соревнование теорий, если сравнивать его со спортивными состязаниями, надо уподоблять не футбольному турниру или матчу боксеров; нет, спор за первенство между научными идеями походит скорее на встречу штангистов. Побеждает учение, способное поднять больший груз, груз-то все время растет, каждый новый опыт, каждая новая порция вырванных у природы сведений о мире ложится добавочным чугунным кружком на нашу придуманную штангу. Зато теория, объясняющая все новые и новые опыты, от добавочного груза каждый раз становится и все сильнее. Иногда же последняя соломинка ломает спину верблюда, и теория сходит со сцены, как надорвавшийся штангист.

Именно это и произошло в последние годы с так называемой обобщенной теорией гравитации Бренса — Дике, рухнувшей под ударами экспериментов, а ведь ее считали наиболее серьезной соперницей геометродинамики Эйнштейна… Обобщенная теория гравитации предсказывала, в частности, что Солнце должно быть несколько сплющенным, теперь же выяснилось, что оно с этим «не согласно». Стоит оговориться, что и теория Уайтхеда и теории Бренса — Дике и практически все теории гравитации, еще остающиеся жизнеспособными, взяли у теории относительности ее идейную основу и признают теснейшую связь материи с пространством, физики с геометрией. В определенном смысле слова все такие построения — дети общей теории относительности.

И все же, как бы она ни казалась жизнеспособной, ее ждет общий для всех хороших научных теорий конец. Она непременно станет частью другой теории, более точной, более глубокой, более широкой.

Снизив тон, можно сказать, что у каждой физической теории есть своя ахиллесова пята, свое слабое место.

О многих научных построениях можно сказать то же, что говорил герой О'Генри благородный жулик Джефф Питерс о тресте: «Трест и похож и не похож на яйцо. Когда хочешь расколоть яйцо, бьешь его снаружи. А трест можно разбить лишь изнутри. Сиди на нем и жди, когда птенчик разнесет всю скорлупу. Да, сэр, каждый трест носит в своей груди семена своей гибели, как петух, который в штате Джорджия вздумает запеть слишком близко от сборища негров-методистов, или тот член республиканской партии, который выставляет свою кандидатуру в губернаторы Техаса».

Достаточно самого беглого взгляда на историю физики, чтобы увидеть: каждую серьезную и признанную теорию ниспровергали или делали частным случаем другой теории, как правило, самые верные — и самые лучшие — ученики ее создателей. Не было гениев-невежд, приходивших со стороны с совершенно новыми идеями. Люди, воспитанные на Аристотеле и Птолемее, разрушили Вселенную, придуманную Аристотелем и Птолемеем. Классической физике конца XIX века нанесли удар ученые, воспитанные корифеями этой самой классической физики.

И точно так же не противники, а последователи Эйнштейна заставят общую теорию относительности уступить место еще более прекрасной и могучей системе.

Какой именно?

Советский физик-теоретик А. Л. Зельманов сказал по этому поводу: «Изо всех прогнозов самый верный состоит в том, что ни один прогноз не окажется верным».

И все же можно без особого риска ошибиться сделать несколько достаточно общих предсказаний на сей счет.

Вероятно, в рамках этой новой системы нам станет яснее то, что Ньютон в своих мучительных размышлениях называл «причиной тяготения». Но можно не сомневаться, что не появится наглядной механической модели тяготения, о которой так мечтали ученые в прошлые века, а некоторые любители науки — и сегодня.

Новая теория долго будет более сложной для понимания нефизиками, чем общая теория относительности. Но очень возможно, сами физики будут находить ее более простой, чем геометродинамика Эйнштейна, которую сегодня они считают более простой, чем теория Ньютона. И новое учение будет сначала раем для теоретиков и адом для экспериментаторов. Потом — раем для всех. Пока, наконец… Надо ли договаривать?

И это будет рассматриваться, как часть очередной революции в физике.

А по пути, в промежутке между двумя научными революциями, теория гравитации немало прибавит к пониманию природы тяготения и власти над ним. Победить силу — еще не значит разгадать ее. Зато обратное положение справедливо. Разгадать, достаточно глубоко понять явление природы — значит победить его.

Мы — физики, трудяги и Эйнштейны.Вселенная, в которой мы живем,Нам кажется не слишком совершенной.Мы скоро переделаем ее!

(Один из вариантов гимна студентов физического факультета МГУ)

<<< Назад
Вперед >>>

Генерация: 4.773. Запросов К БД/Cache: 3 / 0
Вверх Вниз