Книга: Чем мир держится?

На весах жизни

<<< Назад
Вперед >>>

На весах жизни

Все живое делят обычно на два грандиозных разряда, отделяя растения от животных. Но можно предложить еще один способ деления — по тому, чувствует ли живое существо свою массу. И тогда весь мир сразу окажется разорван на тех, кто растет и живет в воде, и тех, кому принадлежит суша. К промежуточной группе можно отнести, пожалуй, амфибий, тюленей, некоторых насекомых и морских черепах, водяных змей, крокодилов, выдр… Перечислять долго, но принцип выбора понятен. Пингвина, скажем, тоже стоит причислить к этой категории, потому что он добывает пищу под водой. А вот большинство птиц — создания с «постоянным весом». Это, говоря языком техники, аппараты тяжелее воздуха.

Все, что живет на суше, постоянно ощущает свою массу. Водные животные тут оказываются в несравненно более выгодном положении. Вон кит. Позвоночное, теплокровное животное. Самое огромное живое существо, которое когда-либо обитало на нашей планете. И никто не удивляется, что хотя кит млекопитающее, но гигантом стал в море. Самый крупный из современных сухопутных животных, слон, уступает ему по массе в десяток-другой раз.

Удельный вес человека почти равен удельному весу воды. Готовя человека к полетам в космос, ученые имитируют состояние невесомости, погружая подопытного (в акваланге) в бак с водой, в котором заранее растворено ровно столько солей, сколько нужно, чтобы ее удельный вес точно совпал с удельным весом человеческого тела Конечно, это не победа над гравитацией в точном смысле слова… Однако массы своей человек в воде, как и кит в воде, не ощущает. Кит — представитель водной жизни, человек — сухопутной. Киту — легче.

На сравнении жителей суши и жителей моря довольно легко увидеть некоторые весьма весомые преимущества водной среды. Прежде всего энергетические. На суше приходится бороться с собственной массой. В воде за тебя работает закон Архимеда. Недаром до сих пор при всех достижениях автомобилистов и железнодорожников, не говоря уже об авиации, самыми дешевыми остаются водные перевозки грузов. И паровой двигатель был поставлен сначала на корабль, а уже потом на повозку, поскольку тут требовалось потратить меньше энергии на единицу расстояния. И все из-за закона Архимеда, а закон Архимеда, как известно, действует постольку, поскольку на воду действует земное притяжение.

До глубокой мысли надо подняться.

Станислав Ежи Лец

Жизнь на Земле, как полагают биологи (во всяком случае огромное их большинство), возникла в океане и лишь потом перебралась и на сушу, сумев приспособиться к новым условиям, среди которых немаловажное значение имел вес. Но снова и снова виды живых существ, сформировавшиеся на суше, возвращались в воду. Однако за это приходится расплачиваться. Оказавшийся на отмели во время отлива кит не всегда может дождаться прилива. Он буквально оказывается полураздавленным собственной массой. Его мышцы еле-еле способны раздвинуть ребра, освобождая место расширяющимся при каждом вдохе легким. Не только мышцы, скелет, кровь, все жизненно важные системы китообразных приспособились за время долгой эволюции в водной среде к практическому отсутствию веса.

Экспедиция знаменитого исследователя морских глубин Кусто как-то наткнулась на застрявшего на мели китенка. Его понадобилось для лечения и перевозки поднять на борт. Но «поднять кита из воды — дело мудреное. Даже новорожденный китенок может сломаться от собственного веса без равномерной опоры». Пришлось сделать что-то вроде гамака и подвести под туловище животного. Именно исследование существ, живущих в воде, стало ключом к пониманию роли земного притяжения для жизни. Судя по всему, выходящим на сушу морским животным пришлось когда-то перестроить свой организм для «борьбы» с собственной массой не в меньшей, даже в гораздо большей степени, чем для перехода на новую, легочную форму дыхания. Последнее коснулось прежде всего перестройки дыхательного аппарата и до некоторой степени механизма кровообращения, первое — всего организма. Профессор П. А. Коржуев пишет в книге «Эволюция, гравитация, невесомость»: «Эволюция наземных животных представляет в основном эволюцию приспособлений, направленных на преодоление сил гравитации».

И эту мысль профессора Коржуева отнюдь нельзя назвать тривиальной, хотя может показаться, что данный факт очевиден. Как ни странно, сравнительно немногие мыслители обращали внимание на эту сторону эволюции.

Константин Эдуардович Циолковский специально рассмотрел еще в 1882 году проблему соотношения размеров обитаемой планеты и размеров ее обитателей. Он писал: «Будь иная сила тяжести на нашей планете, и размер наиболее совершенных людей, как, впрочем, и всех других существ, изменился бы».

Англичанин Крукс в 1897 году констатировал, что форма животных определена силой земного тяготения, исключения относятся только к водным животным. Стоит, впрочем, добавить, что если не о заданности размеров живых существ тяготением, то о верхнем пределе, который поставила тяжесть этим размерам, очень убедительно говорил еще Галилей: «…природа не может произвести деревьев несоразмерной величины, так как ветви их, отягощенные собственным чрезвычайным весом, в конце концом сломались бы. Равным образом невозможно представить себе костяка человека, лошади или другого существа слишком большой величины, который бы держался и соответствовал своему назначению, достигнуть чрезвычайной величины животные могли бы только в том случае, если бы вещество их костей было значительно прочнее и крепче, нежели обычные, или же если бы кости их изменились, соразмерно увеличившись в толщину, отчего животные по строению н виду производили бы впечатление чрезвычайной толщины. Это, возможно, уже было подмечено тем проницательнейшим поэтом, который, описывая великана, говорит: нельзя было сказать, насколько он был высок, так все в нем было непомерно толсто».

А дальше Галилей объясняет огромные размеры кита вполне научно даже с современной точки зрения (хоть и называет его, увы, рыбой).

В 1960 году в нашей стране была издана книга биолога В. Я. Бровара «Сила тяжести и морфология животных».

Ее главная идея: «…всякое живее существо взаимодействует с силовым полем. С момента возникновения и на всем протяжении своего онтогенетического[19] развития, связанного с изменением внешней формы и положения частей внутри целого, организм находится под влиянием тяготения».

Сейчас широко разрабатывает проблемы влияния гравитации на конкретные органы и системы организма профессор П. А. Коржуев. Новый подход позволяет, по мнению ученого, понять наконец ряд фактов эволюции — фактов, которые до сих пор не получали убедительного объяснения. Чтобы осмыслить их, полагает Коржуев, прежде всего надо анализировать работу костно-мышечной системы, «так как скелет и мускулатура — наиболее эффективные механизмы преодоления сил гравитации». Мускулатуру для преодоления этих сил нужно обеспечить достаточным количеством энергии, и организму пришлось совершенствовать ее выработку в процессе эволюции.

Производство энергии в организме тесно связано с кровоснабжением органов — ведь именно кровь доставляет в ткани необходимый им кислород. У рыб кровь образуется прежде всего в селезенке и почках. Уже у амфибий появился новый кровотворный орган — костный мозг, причем, собственно, в качестве кровотворного органа выступает скелет в целом, трубчатые кости вместе с заключенным в них костным мозгом.

Эволюция отказалась от усиления кровотворной деятельности старых органов, изготовляющих кровь, — почек и селезенки. «Биологически целесообразно было перемещение очагов кроветворения в те структуры, которые воспринимают всю мощь воздействия сил гравитации в наземных условиях. Такой структурой является скелет. Весь скелет или его отделы… воспринимая нагрузку, автоматически могут регулировать деятельность очагов синтеза гемоглобина».

Профессор Коржуев сравнил отношение массы скелета к массе тела у разных животных и массовое соотношение между собой различных частей самих скелетов у разных же животных. Результат оказался чрезвычайно любопытен. Самый легкий скелет, естественно, у рыб. Самый тяжелый (в среднем) у птиц и млекопитающих, хотя отдельные виды этих классов «сумели» сильно облегчить себя — до рыбьего уровня. Однако это относится, вопреки общепринятым представлениям, отнюдь не к летунам. Среди птиц своеобразный рекорд понижения массы скелета поставила малоподвижная пекинская утка, существо домашнее. У нее скелет по массе составляет только десять процентов массы тела. У ее дикой родственницы кряквы доля скелета в массе тела поднимается уже до одиннадцати и двух десятых процента. А у крачки обыкновенной — почти до восемнадцати процентов.

Скелет малоподвижной морской свинки дает пять с половиной процентов массы тела (абсолютный нижний рекорд в таблице Коржуева), зато у летучих мышей доля скелета поднимается до семнадцати, девятнадцати и двадцати двух процентов общей массы.

Мы привыкли считать, что скелет птиц облегчается благодаря утоньшению стенок трубчатых костей и другим способам, изобретенным природой. С одной стороны, это верно, но облегчение, как видим, не абсолютно. Чтобы летать, нужен мощный скелет.

Мы знаем, какие отличные прыгуны лягушки. Так вот, у травяной лягушки задние конечности дают почти половину массы скелета, шестьдесят четыре процента всей мускулатуры связано у травяной лягушки с задними конечностями — вот что делает ее такой подвижной.

У хорошо летающих птиц на кости крыльев приходится почти половина массы скелета. А у летучих мышей даже более половины общей массы скелета.

«Таким образом, осуществление полета у птиц и млекопитающих потребовало такой же глубочайшей перестройки организма, как и у бесхвостых амфибий, впервые сделавших попытку преодолеть силы гравитации. Примерно половина веса скелета и три четверти веса всей мускулатуры — вот какая цена заплачена за возможность преодолеть силы гравитации на миг и на более длительное парение в воздухе. Нужна была в буквальном смысле слова переплавка организма, фундаментальное перераспределение всех его ресурсов для решения только одной задачи — вырваться из оков земного тяготения».

Если же сравнить отношение массы сердца к массе тела у рыб, амфибий, рептилий и млекопитающих, то картина выглядит в целом еще более впечатляющей. В среднем масса сердца у рыб составляет едва лишь тысячную долю массы тела, у бесхвостых амфибий (лягушек, жаб) — вчетверо большую, у птиц — от одной трехсотой массы тела у фазана до почти тридцатой доли массы тела у колибри; у млекопитающих — от одной триста семидесятой доли массы тела у домашнего кролика и до одной семидесятой — у летучей мыши. Чем больше энергетические затраты, тем более крупное требуется сердце. А энергетические траты уходят прежде всего на борьбу с гравитацией.

При переходе млекопитающих к водному образу жизни идет обратный процесс. Снижается масса скелета, который теперь испытывает меньшую нагрузку. У дельфина, например, она составляет лишь пять-семь процентов массы тела.

Приспособление к гравитации, по Коржуеву, сыграло свою роль и в изменении состава крови наземных живых существ, и во многом другом.

Человек прошел по пути биологической борьбы с гравитацией еще дальше, чем большинство млекопитающих. Мы твердо стоим на двух ногах, обходимся двумя точками опоры. Но это означает, что в нашем теле произошло резкое перераспределение напряжений, связанных с тяжестью — по сравнению с четвероногими животными. Это сказалось на форме костей ног, принявших двойную тяжесть, на костях рук, освобожденных от обязанности служить опорой. Таз женщины, который теперь должен служить опорой плоду, изменил свою старую форму, применяясь к новой функции. Разумеется, все это происходило на протяжении очень длительного времени и, вероятно, происходит и по сию пору. Видно, прав врач и писатель В. Вересаев: «…органы человека и их размещение до сих пор еще не приспособились к вертикальному положению человека. Нужно себе ясно представить, как резко при таком положении должны были измениться направления и сила давления на различные органы, и тогда легко будет понять, что приспособиться к своему новому положению органам вовсе не так легко». Немалое число болезней связывают медики с такой «недоприспособленностью».

Многое в обмене веществ, пищеварении, дыхании, кровообращении обеспечивается у нас специальными физиологическими механизмами. Но в ряде случаев организм «просто» использует даровую силу земного тяготения. Кровь на некоторых участках артерий и вен идет, так сказать, самотеком… Живое существо экономит свою энергию, обходится без лишних морфологических и физиологических механизмов. Это хорошо. Но человек вышел в космос. И тут-то перед ним, сверх прочего, во всей своей важности встала проблема того, до какой степени он приспособлен к земному гравитационному полю. Встала потому, что человечество начало — пусть пока в лице немногочисленных своих представителей — выходить из-под влияния этого поля.

<<< Назад
Вперед >>>

Генерация: 0.887. Запросов К БД/Cache: 3 / 1
Вверх Вниз