Книга: Ледники в горах

Страницы ледниковой истории гор

<<< Назад
Вперед >>>

Страницы ледниковой истории гор

На протяжении геологической истории нашей планеты она испытывала нашествия ледников, занимавших нередко обширные пространства суши. Следы этих древних оледенений, главным образом в виде плотносцементированных мореноподобных отложений — тиллитов, обнаружены на всех материках, в том числе и в тех местах, где теперь растут влажные тропические леса или расположены бескрайние пустыни.

Вопрос о числе оледенений в истории Земли еще окончательно не решен, так как в наиболее древних породах (возраст более 2,8 млрд. лет), из-за их глубокой метаморфизации трудно выявить критерии существования ледников. Возраст самой древней из довольно надежно установленных ледниковых эпох — гуронской — примерно оценивается в 2,3 млрд. лет. За ней последовали гнейсёская (950 млн. лет), стёртская (750 млн. лет) и варангская (680—660 млн. лет).

Следы оледенений обнаружены и в раннем палеозое. Как это ни парадоксально, лучше всего они изучены в Сахаре. Там в породах позднего ордовика (460—430 млн. лет назад) были выработаны троги, сохранились исштрихованные ледниками скалы и другие образования, совершенно несовместимые с современной пустынной средой.

Одно из самых продолжительных оледенений развивалось и в позднем палеозое — в каменноугольном периоде и в начале пермского периода (335—260 млн. лет назад). Относящиеся к этой эпохе тиллиты встречаются в Южной Америке, Южной Африке, Австралии и Антарктиде, которые тогда образовывали единый материк Гондвану. Реконструкция его оледенения во многом способствовала возрождению концепции континентального дрейфа, выдвинутой немецким геофизиком А. Вегенером в 1912 г. и составившей основу современной глобальной тектоники.

Исследователи придерживаются мнения, что древние оледенения развивались отнюдь не в исключительных природных обстановках, а регулировались общепланетарными геологическими процессами. Поэтому не вызывает сомнения тот факт, что даже в отдаленные геологические периоды очагами оледенений тоже были горы. Они росли и разрушались, а соответственно менялась и география оледенения. Сопряженность оледенений с горообразованием установлена вполне определенно. Так, например, пермско-каменноугольному ледниковому периоду предшествовало герцинское горообразование. В глобальных ледниковых событиях установлена периодичность с интервалами порядка 150 млн. лет.

В этой последовательности бывали и исключения — до сих пор не обнаружены признаки оледенения в юрском периоде (около 180—135 млн. лет назад). Возможно, потому, что в это время не происходило интенсивного горообразования.

Наиболее детально проследить связь между орогенезом и развитием оледенения лучше всего удается на примере последнего этапа горообразования в кайнозое. Тогда в результате тектонических движений сформировались многие горные системы и материки заняли близкое к нынешнему положение на поверхности Земли. Благодаря восходящим движениям за последние несколько миллионов лет Альпы выросли на 2000 м, Гималаи — на 3000 м, а Кавказ — даже на 3500 м. Понятно, что поднятие гор существенно влияет на климат и с какого-то момента понижение температуры и рост количества осадков стимулируют накопление снега и льда.

Факты свидетельствуют, что кайнозойское оледенение началось в Антарктиде и его колыбелью были Трансантарктические горы, испытавшие поднятие в позднем палеогене, около 35 млн. лет назад. Наряду с поднятием гор оледенению способствовали другие важные палеогеографические события. Известно, что Антарктида к тому времени заняла околополюсное положение и окончательно утратила связь с Австралией. Это сопровождалось формированием циркумантарктической системы морских течений, термической изоляцией материка и соответствующей перестройкой атмосферной циркуляции, что в совокупности активизировало ледниковые процессы. Разрастаясь, горные очаги оледенения постепенно сливались и образовывали сплошной ледниковый покров, который достиг максимальных размеров около 5 млн. лет назад.

Первые ледники в северном полушарии появились значительно позднее, чем в Антарктике, — примерно 4—3 млн. лет назад. Наиболее определенные данные имеются по западному горному обрамлению Северной Америки и по Исландии. Так, в осадочных породах Исландии за последние 3,1 млн. лет зафиксировано не менее 10 ледниковых циклов. Близкая датировка начальной активизации ледниковых процессов в горах (2,06 млн. лет назад) установлена и на другом конце Земли — в Аргентинских Андах.

К настоящему времени известно немало фактов, свидетельствующих о кардинальном изменении климата и всей природы нашей планеты около 2 млн. лет назад. Важной реакцией на возросшее похолодание явилось разрастание ледников во многих горных странах. Около 1,8 млн. лет назад трансформация природной среды приобрела особенно большие масштабы и Земля вступила в современный период своего развития, называемый четвертичным. По этому периоду мы располагаем наиболее полной информацией, которая широко используется и для реконструкции горных оледенений. Конечно, и здесь в основе лежит изучение ледниковых и других генетически связанных с ними отложений. Подходы к их исследованию в принципе базируются на тех же стратиграфических, литологических и палеонтологических методах, применяемых в геологии более древних периодов.

Физические свойства климата неизбежно проявляются в составе и строении поверхностных отложений и формах рельефа. Выше мы уже отмечали роль литоморфологического анализа морен в изучении гляциологических процессов. Кроме того, данные о составе и строении морен совершенно необходимы для их четкой диагностики, поскольку в горах встречается немало других отложений и форм рельефа, внешне сходных с ледниковыми. Много лет продолжается дискуссия о происхождении вала Тюбеле в долине реки Баксан или Башильского вала в долине реки Чегем на Северном Кавказе. В обоих случаях ставится вопрос: сель это или морена, тогда как единственно правильный ответ дал бы литологический анализ.

Известно также, что в верхней части долины реки Сакени в Абхазии обнаружена серия гряд, которые принимали за конечные морены. При исследовании их петрографический состав крупнообломочного материала оказался исключительно однородным и сходным с составом коренных пород близлежащих участков бортов трога. Концентрация мелкозема в грядах была крайне незначительной. В плановом отношении гряды постепенно расширялись от бортов трога к его осевой части. Таким образом, судя по морфологии гряд и характеру их отложений, вполне можно интерпретировать формы обвального происхождения, а не конечные морены. Заметим, что в условиях тектонически активного центральнокавказского высокогорья обвалы — довольно обычное явление.

Кроме таких материальных свидетельств пребывания ледников, как морены, следует особо выделить ленточные глины — осадки ледниково-подпрудных озер. Для диагностики холодного климата важно изучение многообразных ископаемых мерзлотных явлений: структурных грунтов, солифлюкционных отложений и др.

Косвенным индикатором приледниковых обстановок служат лёссы — пористые алевриты, которые, по мнению многих исследователей, были принесены ветрами, дувшими с ледников. На связь лёссов с оледенением впервые определенно указал видный русский геолог П. А. Тутковский.

Вполне понятна и роль стратиграфической информации, способствующей установлению последовательности событий ледниковой истории. Здесь большое значение приобретают остатки растений и животных, содержащиеся в межледниковых отложениях. Судить о климатах прошлого позволяют палеонтологические данные. Правда, при их интерпретации следует учитывать миграции организмов, возможность переотложения остатков и формирования так называемых смешанных комплексов флоры или фауны.

Для реконструкции истории оледенения очень часто привлекается спорово-пыльцевой анализ — метод, базирующийся на изучении внешних оболочек пыльцевых зерен и спор растений. Пыльца и споры производятся растениями в огромных количествах: из одной сережки орешника выпадает до 14 млн. пыльцевых зерен, а из одного растения щавеля — 400 млн. Эксперименты показали, что перенос этих крохотных частиц (размером от 10 до 150 мкм) ветром, текучими водами, насекомыми, птицами и даже пресноводными моллюсками осуществляется на небольшие расстояния, поэтому пыльцевой дождь для конкретной территории соответствует составу растительности. Пыльца и споры лучше всего сохраняются, когда нет доступа воздуха, например в торфе, озерных илах и глинах.

Надежность гляциоклиматических интерпретаций возрастает, когда изучение пыльцы и спор дополняется анализом крупных растительных остатков: плодов, семян, коры деревьев и т. д. В последние десятилетия исследуются остатки жуков, прежде всего их надкрылья, которые тоже нередко встречаются в озерных и болотных отложениях.

Специалистов всегда интересовал вопрос об абсолютном возрасте древних оледенений. Принципиальная возможность датировать геологические события появилась благодаря успехам физики и химии в области радиоактивного распада и установлению закономерностей миграции отдельных элементов и их изотопов в природных системах.

Датировать четвертичные оледенения помогают две группы методов. Одна из них основывается на определении содержания изотопов в исследуемых породах, другая — на анализе распределения изотопов природных рядов урана, актиноурана и тория. К последней группе, в частности, относится калий-аргоновый метод, который позволил вычислить возраст кайнозойского оледенения Антарктиды.

Важный вклад в изучение самых молодых оледенений внес радиоуглеродный метод, отличающийся высокой точностью. Сфера его применения в основном охватывает последние 50 тыс. лет.

Методы датирования часто применяются в различных комбинациях. В частности, перспективным оказалось сочетание калий-аргоновых датировок с анализом изменений магнитного поля Земли. Это дало возможность наметить важные вехи в истории ледникового периода, или плейстоцена.

Даже из приведенного краткого обзора можно составить впечатление о разнообразии приемов и подходов в палеогляциологии. Остается упомянуть еще о традиционном геоморфологическом методе, действенность которого проявляется в тех случаях, когда следы оледенения выражены в рельефе.

Развитие этого метода стимулировал А. Пепк. На материале изучения рельефа северных предгорий Альп он доказал, что к конечным моренам, фиксирующим стационарное положение концов ледников, причленяются террасы, сложенные галечниками. Альпийская модель А. Пенка исходила из того, что во время оледенений происходила аккумуляция галечников, принесенных потоками талых ледниковых вод, а в межледниковья шло углубление русел рек. Четыре основные террасы сопоставлялись с четырьмя плейстоценовыми оледенениями Альп, получившими названия гюнца, минделя, рисса и вюрма.

Не только методические приемы, но и терминология альпийской модели получили широкое признание и на протяжении десятков лет были эталоном при изучении оледенений других горных стран. По мнению видного палеоклиматолога из ФРГ М. Шварцбаха, классические исследования А. Пенка и Э. Брюкнера в Альпах по своему значению могут расцениваться как подлинная научная революция.

Надо сказать, что альпийская модель опиралась также, хотя и в небольшом объеме, на материалы изучения межморенных озерно-болотных отложений с применением палеоботанических и радиоуглеродного методов. В последние годы альпийская ледниковая схема по стратиграфическим данным была дополнена еще двумя древнейшими оледенениями — дунайским и биберским, которые проявились в горах в раннечетвертичное время.

Оценивая геоморфологический подход к изучению оледенения гор, следует остановиться на его дискуссионных сторонах. Как упоминалось выше, обычно проводится привязка конечно-моренных компонентов к речным террасам. Однако, бесспорно, четкие соотношения конечных морен и террас, например в северных предгорьях Альп, где работал А. Пенк, наблюдаются не так уже часто. К тому же возрастная интерпретация циклов террасообразования еще мало изучена и для ее выяснения необходимо располагать определениями абсолютного возраста, в которых пока ощущается явный недостаток.

Весьма спорным также является учет фактора сохранности морен в горах, хотя большинство исследователей признают, что следы вюрмского — последнего плейстоценового оледенения опознаются по их лучшей выраженности в рельефе по сравнению с более древними ледниковыми образованиями. На наш взгляд, морфологическая выраженность морен — весьма неопределенный критерий, на основе которого трудно объективно выделить этапы истории горного оледенения. Хорошо известные крупные моренные амфитеатры у озер Комо, Гарда, Лаго-Маджоре и других большинство итальянских исследователей относят к рисскому оледенению, а ученые ФРГ и Франции считают их следами вюрмского оледенения. Свежие конечные морены во Французских Альпах тоже трактуются неоднозначно. Одна группа специалистов относит их к двум этапам вюрмского оледенения, другая — к образованиям рисского и вюрмского оледенений.

Используя в основном принцип сохранности морен, советский палеогляциолог М. Г. Гросвальд представил модель обширного вюрмского оледенения на Памире, однако существуют мнения и о более скромном распространении памирских ледников в ту же эпоху.

Надо отметить, что утверждения о горно-долинном характере позднеплейстоценового оледенения получили самое широкое распространение среди исследователей гор на юге СССР. Так, академик К. К. Марков среди древнеледниковых форм выделял преимущественно следы долинных ледников, спускавшихся до высот 1900—2000 м над уровнем моря. На Алтае также преобладали долинные ледники в позднем плейстоцене. М. Г. Гросвальд признает возможность существования значительных ледниковых покровов позднеплейстоценового возраста на Саяно-Тувинском нагорье и особенно на Памире. По мнению ученого, снеговая линия в вюрме по сравнению с современным положением снижалась не менее чем на 1000 м, но другие исследователи обычно приводят цифры порядка 600—800 м, а на Восточном Памире — даже 250—450 м. Точка зрения М. Г. Гросвальда о покровном оледенении некоторых горных районов в вюрме находит в последние годы сторонников. Недавние работы экспедиции из ФРГ в Тибете тоже подтвердили наличие обширного ледникового покрова на этом нагорье в позднем плейстоцене.

Вполне очевидно, что дальнейшее использование геоморфологического подхода при изучении древнего оледенения гор обязательно должно дополняться комплексом других методов: геохронологических, палеонтологических, литолого-геохимических. Последние заслуживают особо пристального внимания, поскольку трансформация вещественного состава и строения морен определенно зависит от их возраста. Интересные результаты в области возрастной дифференциации горных морен по литолого-геохимическим признакам получены английским палеогеографом Э. Дербиширом для Каракорума.

Вопрос о продолжительности классических плейстоценовых оледенений весьма спорный. Со времен исследований А. Пенка и Э. Брюкнера утвердилось представление, что ледниковые периоды в горах длились многие десятки тысяч лет. Например, последнее (вюрмское) оледенение продолжалось почти 100 тыс. лет.

Однако в центральных районах Альп, Памира, Тянь-Шаня, Алтая и других горных стран были обнаружены слои озерных и болотных отложений, содержащих остатки растений, которые свидетельствуют о климате, близком к современному. С помощью радиоуглеродного метода было установлено, что эти отложения накапливалась 35—25 тыс. лет назад. На Памирском высокогорье на восточном берегу озера Каракуль обнаружены выходы голубых глин с растительными остатками, датированными примерно в 28 тыс. лет назад. Поскольку в непосредственной близости от этого водоема и в настоящее время находятся ледники, то, по-видимому, голубые глины не могли накапливаться во время более обширного оледенения.

Это предположение подтверждается данными споровопыльцевого анализа о повышенном содержании пыльцы древесных пород: ивы, сосны, вяза, ольхи, кедра (9—11% от общего количества пыльцы и спор). Наиболее вероятно, что пыльца заносилась в озерную котловину от склоновых и пойменных лесов Западного Памира, которые в ту пору поднимались достаточно высоко. Есть данные о сокращении масштабов оледенения во внутренних районах Тянь-Шаня (котловина озера Чатыркёль) и Алтая (Чуйская котловина) примерно в то же время.

Многочисленные свидетельства двухфазности плейстоценового оледенения имеются и на Кавказе, хотя они носят лишь геоморфологический характер и пока не привязаны к шкале геологического времени. В рельефе гор там выявляются следы двух уровней, разделенных глубоким эрозионным врезом — порядка 100 м и более (за пределами высокогорий). В краевых и межгорных прогибах обособляются две террасы (например, черкесская и краснодарская надпойменные террасы Кубанского прогиба), которые сопоставляются с максимумами позднеплейстоценового оледенения. Именно с позиций двухфазности последнего оледенения можно объяснить наличие циклов террас — голодностепского и абайского — в горном обрамлении Ферганской котловины. Сходные геоморфологические данные получены и в других горных районах. В Альпах обнаружено, что средневюрмское потепление, сопровождавшееся значительным сокращением ледников, началось более 40 тыс. лет назад.

Тот факт, что во многих разрезах, датированных по радиоуглероду, органогенные толщи залегают непосредственно под мореной, позволяет заключить, что волна последней активизации оледенения в плейстоцене была относительно непродолжительной: она началась немногим более 20 тыс. лет назад и закончилась около 10 тыс. лет назад.

Похолодание, вызвавшее эту активизацию оледенения, было глобальным, однако современные геологические материалы, к сожалению, пока не дают возможности в деталях синхронизировать динамику ледников в разных горных странах. Это относится и к установлению времени максимального разрастания ледников в горах.

Исходя из логических посылок о том, что этот максимум должен был предшествовать наибольшему распространению ледниковых покровов на равнинах, многие исследователи относят его к периоду 20—18 тыс. лет назад. Тем не менее в свете некоторых конкретных фактов такая датировка, скорее всего, завышена. В горах на западе Северной Америки ледники достигли максимума около 15—14 тыс. лет назад, а на Шпицбергене еще позже — около 11 тыс. лет назад.

Выше отмечались представления о том, что во время максимума последнего оледенения снеговая линия резко понижалась (например, в горах Центральной Азии и в Скалистых горах Северной Америки — на 1000 м). В Каскадных горах в Северной Америке депрессия границы питания составила около 850—900 м. Эта величина легла в основу реконструкции климата ледниковой эпохи. Американский гляциолог С. Портер пришел к заключению, что в Каскадных горах среднегодовые температуры были ниже современных на 3—5° С, а температура сезона абляций — на 4—7° С. Такой же результат независимо был получен путем статистико-математической обработки палеоботанических данных. С известной долей условности можно предполагать, что гляциологические обстановки Каскадных гор в то время были сходными с таковыми современной Южной Аляски.

Конечно, следует учитывать, что, хотя во время ледниковых эпох плейстоцена ледники покрывали обширные территории горных стран, реконструкция конкретных гляциологических обстановок весьма непроста, поскольку необходим учет тектонического фактора — роста гор.

Ясно, что во время ранних оледенений плейстоцена Альпы, Кавказ, Кордильеры и другие горы были ниже, чем теперь, и их морфология тоже отличалась от современной. Поэтому палеогляциологические реконструкции оледенений прошлого невозможны без познания геологической истории гор и их рельефа, тщательной фиксации морфологических следов оледенения и установления климатических предпосылок существования ледниковых тел по конкретным временным срезам. Лишь на этой основе можно гляциологически достоверно объяснить эволюцию ледников в горах и наметить пути их развития в будущем. Конечно, пока еще сделаны первые шаги в данном направлении, и наибольшие успехи достигнуты там, где больше исходной информации. Именно потому внимание исследователей привлекает последнее плейстоценовое оледенение и в первую очередь гигантские ледниковые покровы вюрма, распространявшиеся на равнинах.

По мнению А. Пенка и других исследователей, внешняя граница последнего — вюрмского — оледенения в Альпах может быть проведена по почти непрерывной системе конечных морен, отличающихся свежим обликом рельефа и слабой выветрелостью материала. Площадь вюрмской ледниковой оболочки Альпийской области достигала примерно 200 тыс. км2, что почти в 50 раз превышает площадь нынешних ледников, а снеговая линия опускалась в среднем на 1200—1300 м ниже современной.

В Альпах следы древнего оледенения детально фиксировались на предгорных равнинах, днищах трогов и их бортах, а также на былых ледоразделах. Такой подход позволил восстановить не только внешнюю границу оледенения, но и показать сложность внутренней структуры ледниковой системы.

В центре Альп массы льда заполняли продольные и поперечные долины и даже перекрывали части некоторых хребтов. Над общей поверхностью ледников возвышались многочисленные вершины и гребни, создававшие систему орографических барьеров, которые контролировали сток льда. Таким образом, вюрмское оледенение Альп было не покровным, а приближалось скорее к сетчатому типу (т. е. к типу, ныне представленному, например, в некоторых районах Шпицбергена).

В пределах Альпийской области выделялись четыре крупных ледниковых бассейна. Причем ледоразделы по своему положению мало отличались от современных водоразделов. В каждом ледниковом бассейне лед растекался от наиболее высоких осевых частей гор к их периферии. Среди крупнейших ледников северо-западного бассейна выделялись Аарский, Рейсский и Рейнский. Их талые воды устремлялись по долине Рейна в Атлантический океан. Сток от ледников северо-восточного бассейна, куда входили Иннский, Зальцахский, Дравский, Мурский и др., был направлен по долине Дуная в Черноморскую впадину. Ледники западного бассейна — Ронский, Арвский, Изерский, Дюрансский и др.— имели сток по долине Роны в западную часть Средиземноморской котловины. На юг, в сторону Венециано-Паданской равнины спускались ледники, приуроченные к долинам современных рек: Дора-Рипариа, Дора-Бальтеа, Тичино, Адидже, Ньяве, Тальяменто и др. Выходя на предгорья, многочисленные ледники образовывали широкие лопасти, подобно предгорным ледникам типа Маласпина и Беринга на Аляске. Наиболее крупных размеров они достигали у северных подножий Альп, где покрывали Швейцарское и Баварское плато. Здесь предгорные ледники сливались в единый ледниковый покров, распространявшийся в широтном направлении от Лиона до Вены.

Геоморфологические данные позволили выяснить, что в своих осевых частях в вюрме самые крупные ледники Альп имели мощность 1500—1700 м. Зато на ледоразделах, как и в концевых частях ледников, эта величина не превышала 500 м. Мощность льда в предгорных шлейфах составляла 600—700 м.

В некоторых реконструкциях, учитывающих мощности и объемы древних ледников, привлекались современные гляциодинамические закономерности. Интересный пример такого исследования — реконструкция ледников, существовавших в позднем плейстоцене в Скалистых горах в Северной Америке. На основании детального изучения следов этого оледенения удалось выявить большое разнообразие морфологических типов ледников — от небольших каровых до мощных переметных ледников и даже ледяных шапок. При определении мощности ледников было принято во внимание, что базальное напряжение сдвига (т. е. показатель донного скольжения ледника) зависит от мощности льда и уклона ложа. На современных ледниках напряжение сдвига колеблется от 5?104 до 15?104 Па при среднем значении 105 Па, которое и использовалось в реконструкциях. У наиболее крупных ледников мощности превышали 1000 м.

Палеогляциологические реконструкции, выполненные для вюрма, служат исходным уровнем для выяснения тенденций развития оледенения в голоцене, т. е. за последние 10 тыс. лет. Деградация горных ледников в голоцене объясняется глобальным потеплением климата, достигшим наиболее полного выражения во время климатического оптимума (5 тыс. лет назад). X. Альман высказал предположение, что тогда если не все, то хотя бы часть ледников растаяла, а затем в связи с похолоданием в позднем голоцене, т. е. около 3 тыс. лет назад, вновь возродилась. Однако эволюция ледников в последующем также оказалась непростой. Советский географ Г. К. Тушинский считал, что в эпоху пониженной увлажненности в I тыс. н. э. (архызский перерыв) горное оледенение сильно уменьшилось и ледники исчезли с горных перевалов Альп и Кавказа. В эпоху повышенной увлажненности середины и второй половины текущего тысячелетия (стадия фернау) отмечалось наступание ледников в горных странах, сопровождавшееся усилением лавинной деятельности.

Другой советский географ А. В. Шнитников убедительно показал, что на протяжении голоцена происходила направленная деградация горных ледников, подчинявшаяся определенным ритмическим закономерностям. На фоне этой деградации имели место неоднократные подвижки, оставившие в рельефе следы в виде конечных морен, которым приписывался стадиальный характер. Подвижки ледников, по модели А. В. Шнитникова, совершались через 1850 лет.

Такая ритмичность, выявленная по колебаниям уровня бессточных внутриконтинентальных озер, по-видимому, действительно отражает реальные тенденции в развитии климата. Соответственно можно было бы ожидать, что в горных долинах должны сохраниться следы одинакового числа ледниковых стадий. К сожалению, в действительности это не выдерживается, поскольку связь оледенения с климатом отнюдь не проста.

В своих палеогляциологических исследованиях на Центральном Кавказе мы тоже встретили немало трудностей, пытаясь сопоставить последовательные этапы развития климата и растительности со стадиальными ледниковыми образованиями голоцена. Нам удалось установить, что в климатический оптимум голоцена вертикальные растительные пояса повысились, причем амплитуда перемещения верхней границы леса на северном макросклоне Большого Кавказа в его центральной части составила около 300 м. Ранний и поздний голоцен характеризовались меньшей теплообеспеченностью по сравнению со средним. Между тем признаки эпизодических подвижек мы зафиксировали и в среднем голоцене, причем размеры ледников тогда были большими, чем в позднем голоцене и в настоящее время.

Приведем еще один пример. Результаты палеоботанического изучения ряда торфяников, расположенных поблизости от концов ледников, в высотном диапазоне 1800—2300 м, позволили выявить тенденцию к прогрессировавшему увеличению увлажненности в позднем голоцене. Тем не менее данные по геоморфологии, стратиграфии и другим методам однозначно свидетельствуют о последовательном убывании концов ледников в течение упомянутого периода.

Попытки объяснить эти противоречия осложняются из-за отсутствия информации о временной изменчивости осадков по вертикальным поясам кавказского высокогорья. Нельзя исключить и то, что в субатлантический период могли ухудшаться условия питания ледников в высокорасположенных фирновых бассейнах (3500 м и более). Одновременно увлажненность в зоне, куда спускаются концы ледников, и в лесном поясе не только оставалась высокой, но даже возрастала. Тем самым не отрицается вероятность противоположно направленных тенденций климатических изменений в приземных слоях воздуха и в свободной атмосфере.

Используя сочетание различных аналитических методов, особенно для разрезов с несколькими моренными горизонтами и разделяющими их погребенными почвами, мы выяснили, что на фоне общего убывания оледенения в голоцене происходили подвижки концов ледников ранее 8 тыс. лет назад, в интервалах 8—6,4 тыс., 6,4—4,2 тыс., около 3 тыс. лет назад и ряд более молодых. Сведений о продолжительности этих подвижек нет. Несмотря на немалые масштабы моренонакопления (средняя мощность каждого моренного горизонта 12—15 м), мы вполне допускаем, что подвижки могли быть и кратковременны. Тем не менее известно, что в климатический оптимум голоцена ледники высокогорного Кавказа не только не исчезали, но наоборот, были гораздо больше, чем современные.

Приведенные примеры убедительно показывают, что решение палеогляциологических проблем в значительной степени упирается в необходимость глубокого раскрытия процессов взаимодействия климата и оледенения. Конечно, особенно ценными являются исследования режима и динамики современных ледников.

Экстраполяция гляциологических данных может быть достигнута на основе сопоставления информации о колебаниях ледников с тенденциями развития климата за последние десятилетия и столетия. Для этого молодого этапа в истории оледенения представление о колебаниях ледников существенно конкретизируется, так как объем палеогляциологической информации возрастает по мере приближения к современности.

Напомним, что под колебаниями ледников понимается увеличение или уменьшение их размеров. В принципе необходимо фиксировать длину, площадь и мощность ледников. Однако до сих пор в основном ограничиваются лишь регистрацией изменения положения концов ледниковых языков, поскольку измерения площадей и объемов ледников сопряжены с большими трудностями. Различают сезонные, вековые и циклические колебания, непосредственно отражающие реакции ледников на изменения климата. Вместе с тем различают колебания, причина которых заключается во внутренней неустойчивости ледников. В таком случае влияние климата сказывается косвенно.

Естественно, недавние колебания ледников должны иметь надежную временную привязку. Прежде всего необходима постановка повторных геодезических наблюдений за положением ледниковых языков. Нередко в качестве реперов используются выступы скал на бортах трогов и даже огромные валуны на днищах долин. На этих камнях иногда можно увидеть не одну, а несколько меток, оставленных разными исследователями. Каждая метка обозначает год наблюдений и расстояние до конца ледника. Реперы могут служить долгое время. Так, у ледника Безенги на Кавказе на крупном камне сохранилась метка «1946 г. 270 м» (до конца ледника). Сейчас конец ледника отстоит от этого валуна на 600 м. Геодезический метод регистрации изменений размеров ледников широко применяется в разных горно-ледниковых районах. Такие работы проводятся в Альпах почти 200 лет.

Основу исторического метода изучения поведения ледников составляет анализ старых карт, архивных материалов и публикаций. Особенно хорошие результаты этот метод позволяет получить в горных районах, где издавна живут люди. В частности, много интересных свидетельств хранит история альпийских ледников. Из поколения в поколение здесь передаются легенды о катастрофических наступлениях ледников, стерших с лица земли целые селения.

Для анализа ледниковых колебаний привлекаются самые разнообразные исторические сведения. Например, французский исследователь Ле Руа Ладюри использовал для реконструкции ледников в Альпах не только непосредственные данные о подвижках, но и материалы о росте цен и налогов в периоды активизации оледенения, тома судебных тяжб по поводу земель, освободившихся в результате сокращения ледников, а также даты сбора урожая в приледниковых районах. Ле Руа Ладюри установил, что максимум оледенения за последнее тысячелетие относится к 1720 г. В следующее десятилетие ледники несколько уменьшились в размерах, но все же были значительно больше современных. В 1740—1750 гг. они снова перешли в наступление, причем эта активизация, по-видимому, была связана с глобальным ухудшением климата — в то же время наступали ледники в Норвегии, Исландии, на Аляске и в других районах. Это продолжалось практически до 1770 г., затем размеры оледенения несколько сократились. Начало новой волны активизации Ле Руа Ладюри датирует 1818—1825 гг., что подтверждается даже гравюрами с изображением ледников. В целом интервал с середины XVIII в. до середины XIX в. в научной литературе часто называют малым ледниковым периодом, хотя, на наш взгляд, он начался гораздо раньше и продолжался не менее 750 лет. За последние 100 лет ледники повсеместно отступают. Однако на этом фоне отмечались и периоды ухудшения климатической обстановки — деградация ледников замедлялась, а в отдельные интервалы происходило даже их незначительное наступание. Например, на Центральном Кавказе подвижки ледников были в 1885—1887, 1925—1932, 1953—1955 и 1966—1967 гг. Последнее наступание ледников началось в 1979 г. и продолжается до сих пор. Так, самый большой ледник Кавказа — Безенги — за это время сумел продвинуться почти на 300 м. На Шпицбергене замедление темпов отступания происходило в 1910, 1925 и 1940 гг.

Понятно, что геодезический метод и исторические свидетельства имеют временные ограничения, поскольку не выходят за рамки нескольких сот лет. Чтобы расширить этот диапазон, привлекаются биоиндикационные методы: лихенометрический и дендрохронологический, позволяющие получить массовые и надежные результаты.

В 1950 г. в Венском университете австрийский геоботаник Р. Бешель защитил докторскую диссертацию о росте лишайников, в которой выдвинул оригинальную идею: увеличение размеров лишайника непосредственно зависит от его возраста. Применив эту зависимость к лишайникам, растущим на каменных субстратах в Альпах, Р. Бешель разработал методику абсолютного датирования моренных гряд. В результате в гляциологии сложилось эффективное биоиндикационное направление, которое позволяет исследовать динамику оледенения в прошлом.

За этим направлением закрепилось название «лихенометрия». Сущность его отнюдь не исчерпывается датированием морен. По лихенометрическим данным можно составить представление о сменах палеоклиматических обстановок в горах. Как известно, ледники являются аккумуляторами твердых осадков и чутко реагируют на любые отклонения температурного режима. Понятно, что точно восстановленные палеоклиматические показатели могут составить основу для прогнозирования нивально-гляциальных процессов.

В ходе лихенометрических исследований выяснилось, что корковые лишайники поселяются на камнях через несколько лет после отступания ледника. Диаспоры лишайников разносятся по воздуху и, попадая на обнаженную поверхность морен, начинают активно развиваться, конечно, при наличии благоприятных экологических условий. Как правило, уже через 100—300 лет валуны на моренных грядах оказываются почти сплошь покрытыми слоевищами лишайников.

Скорость прироста лишайников не остается постоянной. На первых порах она невелика, и должно пройти лет 15—20, прежде чем их можно различить невооруженным глазом. Затем наступает период ускоренного роста лишайников, который, например, на Центральном Кавказе у разных видов лишайников колеблется от 40 до 500 лет. Впоследствии скорость роста лишайников надолго замедляется.

В целом лишайники растут очень медленно. Например, у накипного лишайника — ризокарпона географического (Rhizocarpon geographicum), наиболее часто используемого в лихенометрии, радиальный прирост слоевищ всегда менее 1 мм/год, причем в горах умеренных широт он составляет 0,4-0,15 мм/год, а в условиях Арктики еще меньше — 0,14-0,05 мм/год. Заметим, что некоторые листовые и кустистые лишайники тоже отличаются низкими темпами роста. Так, умбиликария цилиндрическая (Umbilicaria cylindrica), в изобилии встречающаяся на скалах и камнях в высокогорных районах и полярных пустынях, прирастает не более чем на 0,004 мм/год в Альпах.

Замедленный рост лишайников определяет длительность их существования. В частности, установлено, что отдельные слоевища ризокарпона географического живут до 4500 лет в Арктике. В Альпах и на Кавказе эти лишайники растут от 600 до 1300 лет. Продолжительность жизни и скорость роста лишайников варьируют в зависимости от экологических условий, причем особенно влияют такие факторы, как продолжительность залегания снежного покрова, количество летних осадков, сумма среднесуточных положительных температур за теплый период года и др. Тем не менее на обширных территориях со сравнительно однородными климатическими показателями экологический фон меняется в довольно узком диапазоне и отклонениями от среднего уровня можно пренебречь.

Итак, при использовании лихенометрического метода вводится допущение об однотипной закономерности прироста лишайников и длительности их жизни в определенном регионе. Поэтому если замерить максимальные диаметры самых крупных слоевищ лишайников и измерить среднегодовой прирост их диаметра, то можно вычислить минимальный возраст моренных субстратов, на которых поселились лишайники. Иными словами, есть возможность установить время формирования морен, а также ритмы многих динамичных природных процессов. Последнее приобретает важнейшее значение для решения проблем, связанных с регулированием состояния окружающей среды и прогнозированием стихийных бедствий.

Поскольку доказано, что на протяжении своей жизни лишайник растет с неодинаковой скоростью, в районах проведения детальных исследований необходимо располагать несколькими (не менее трех) хронологическими реперами. Для этого используются моренные гряды, возраст которых независимо и надежно установлен по историческим источникам и радиоуглеродным датировкам. Естественно, что для создания шкал прироста лишайников желательно располагать информацией о возрастах самой молодой и самой древней гряд. Возраст промежуточных гряд устанавливается путем интерполяции.

В нашей стране лихенометрия морен вошла в практику гляциологических исследований. Так, на Полярном Урале датирование морен ледников ИГАН, Берга и Обручева показало, что в этом районе было не менее четырех этапов активизации оледенения на протяжении малого ледникового периода.

Детальную информацию о динамике ледников удалось получить на Центральном Кавказе (рис. 14), где лихенометрическая съемка была проведена на северном и южном макросклонах. По заключению гляциолога Н. А. Голодковской, выполнившей эту работу, за последние 700—800 лет общее убывание ледников осложнялось эпизодическими подвижками не менее 10 раз. Во время этих подвижек граница питания ледников снижалась по сравнению с современной максимально на 150 м. Полностью подтверждается концепция А. В. Шнитникова о четкой ритмической изменчивости природных процессов. В динамике ледников Кавказа наиболее выражен 80-летний ритм.

Результаты наших исследований на высокогорном Кавказе вполне согласуются с материалами среднеазиатских палеогляциологических экспедиций. Благодаря применению спорово-пыльцевого анализа в горах Средней Азии удалось выявить два периода повышенной увлажненности, которые могли сопровождаться крупными подвижками ледников: в конце позднего плейстоцена—самом начале голоцена и в среднем голоцене. Кроме того, выделяется еще целый ряд подвижек меньшего ранга. Все они осложняли общий ход деградации оледенения, и в большинстве случаев, так же как на Кавказе, размеры ледников во время каждой подвижки были меньше, чем во время предыдущей. Опираясь на данные спорово-пыльцевого анализа конечных морен в Фанских горах в Таджикистане, Н. Н. Михайлов отметил, что осцилляции ледников происходили при разных соотношениях тепла и влаги. Применив дендрохронологический метод, он подтвердил правомочность обособления двух этапов активизации горных ледников.

По материалам лихенометрической съемки Центральнокавказского высокогорья была выполнена реконструкция площадей и объемов ледников за малый ледниковый период. На его раннем этапе, в конце XIII—начале XIV в., ледники на Центральном Кавказе занимали площадь 219 км2 (в настоящее время 122 км2). При этом на северном макросклоне за истекшие 700 лет они сократились на 44%, а на южном — на 35%. Особенно активна деградация оледенения протекала в конце XIX—первой половине XX в., в последние десятилетия темпы этого процесса замедлились и некоторые ледники все чаще стали наступать.


Рис. 14. Результаты лихенометрической съемки приледникового участка Безенгийской долины

1 — дистальные края морен; 2 — районы проведения лихенометрической съемки; 3 — наиболее типичные участки моренных гряд, четко выраженных в рельефе; 4 — направление стока вод из плотинного озера. Диаметры лишайников даны в миллиметрах: черные кружки — максимальные значения; кружки с черными точками — средние максимальные

Гляциологические обстановки Центрального Кавказа, восстановленные для малого ледникового периода по лихенометрическим данным, оказались довольно сходными с данными по другим горно-ледниковым странам. Это сходство особенно проявляется в величине депрессии границы питания ледников — порядка 150 м за весь малый ледниковый период.

На Тянь-Шане за этот же отрезок времени оледенение претерпело три этапа активизации: в конце XVIII и XIX вв., в конце XV в. и в XI в. или несколько раньше. Эта последовательность ледниковых подвижек находит отражение в колебаниях уровня озера Иссык-Куль: наступаниям ледников отвечали регрессии озера, и наоборот.

Климатическая обусловленность событий ледниковой истории гор может быть раскрыта и с помощью другого биоиндикационного метода, основанного на систематическом обследовании и подсчете годичных колец деревьев. Возможность использования данных по приросту деревьев в качестве показателя изменчивости природных факторов привела к обособлению дендроиндикации как самостоятельного научного направления.

Измерения ширины годичных колец выполняются под микроскопом или бинокулярной лупой, иногда для этих целей используются автоматизированные установки. Особое внимание уделяется подсчету узких колец, а не колец средней ширины, имеющих ограниченное диагностическое значение. В результате статистической обработки массовой информации можно выявить тесные связи между ростом колец и колебаниями температур и осадков.

Дендроиндикационный метод «работает» в пределах последних тысячелетий: в горах Средней Азии туркестанская арча растет до 2000 лет, а некоторые виды сосен в горах Калифорнии — до 4000 лет. Привлечение данных по годичным кольцам ископаемых деревьев позволяет расширить сферу применения дендроиндикации на весь голоцен.

В последние годы выяснилось, что одной из важных дендроиндикационных характеристик является не только ширина колец, но и их оптическая плотность. Сопряженный анализ данных дендроиндикации и лихенометрии открывает большие перспективы для решения проблемы взаимодействия климата и оледенения.

Изучение древних и молодых оледенений имеет не только сугубо научный интерес, поскольку при этом открываются возможности глубже проникнуть в мир современных ледниковых процессов и явлений. Одновременно можно осуществить прогноз поведения ледников, что особенно актуально в связи с долгосрочным планированием хозяйственной деятельности в горах.

Перелистывая страницы сложной ледниковой истории Земли, невольно задаешься вопросом: а что же вызывало оледенения? Однозначного ответа на этот вопрос нет. Потому и существует множество гипотез, авторы которых главным образом геофизики, физики и астрономы.

Среди геофизических гипотез наиболее известны две. Одна из них тесно связана с возрождением представлений Л. Вегенера о дрейфе материков и становлением тектоники литосферных плит. В ходе своего перемещения некоторые материки занимали полярное положение и становились очагами оледенений. Гипотеза широко привлекалась для объяснения оледенения Гондваны в пермско-каменноугольное время. Однако она не раскрывает причины позднекайнозойского оледенения, когда не происходило резких изменений в положении материков. Более того, многократность оледенений в плейстоцене подтверждается и тектоникой литосферных плит. Следует, между прочим, заметить, что полярное положение вовсе не обеспечивает оптимальных условий для развития оледенения: в этом отношении лучшие возможности имеются в горах умеренного пояса, где выпадает много снега, а летом довольно прохладно.

Другая геофизическая гипотеза отдает предпочтение миграции полюсов, т. е., по существу, сходна с предыдущей. По мнению американских ученых М. Юинга и У. Донна, полюсы заняли нынешнее положение в начале плейстоцена, что стимулировало развитие оледенений в северном полушарии. Установить же причины многократности последующих оледенений с позиций данной гипотезы нельзя, поскольку в плейстоцене положение полюсов мало менялось.

Далее выделяется ряд гипотез, которые исходят из изменений в положении суши и моря, а соответственно и системы морских течений. Последние играют ведущую роль в переносе тепла из экваториальных широт в полярные, и, естественно, сдвиги в системе морских течений могут привести к похолоданию в высоких широтах. В частности, предполагаемое поднятие Фарерско-Исландского порога способно преградить путь теплым атлантическим водам к северу. Такой эффект, видимо, мог сказаться на гляциоэвстатическом понижении уровня моря в связи с развитием оледенений, но вряд ли был первопричиной оледенений.

Поднятие гор, вероятно, тоже могло стимулировать разрастание ледников, и, как отмечалось выше, связь оледенений с эпохами горообразования в общем не вызывает сомнений. Во всяком случае, временная сопряженность альпийского орогенеза и позднекайнозойского ледникового периода несомненна. Вместе с тем пока еще нет фактов, доказывающих, что неоднократность и последовательность плейстоценовых оледенений определялась чередованием поднятий и опусканий.

Немалые осложнения вызывает учет гляциоизостатических движений. Гляциоизостазия — реакция земной коры на таяние масс льда. Следующее в этой связи поднятие может достигать четверти и даже трети мощности ледникового тела. Подобным эффектом данного процесса должно быть похолодание в наиболее поднятых частях гор, где ледники способны не только сохраняться, но даже разрастаться.

Еще одна группа гипотез сопряжена с изменениями в атмосфере. Здесь особенно известна концепция колебаний в содержании углекислоты. При уменьшении доли газа в атмосфере сокращается поглощение длинноволновой радиации и происходит похолодание. Автором этой концепции был американский ученый Т. Чемберлен, разработавший ее основные принципы в конце XIX в.

Шведский ученый С. Аррениус связывал уменьшение содержания углекислоты в воздухе с ослаблением вулканической деятельности, и наоборот. В наши дни советский климатолог член-корреспондент АН СССР М. И. Будыко считает, что под влиянием растущего потребления минерального топлива атмосфера пополняется продуктами его сжигания, в том числе углекислотой, что оказывает глобальный отепляющий эффект. Тем не менее совершенно ясно, что колебаниями в содержании атмосферной углекислоты невозможно объяснить неоднократность оледенений в плейстоцене.

Вулканический пепел, попадая в атмосферу, тоже может сковывать поступление солнечной радиации, однако, несомненно, этот экран имеет скорее региональное, чем глобальное значение и вряд ли сохраняется надолго. Кроме того, наши знания об этапах вулканической деятельности в плейстоцене крайне фрагментарны.

Группа климатических гипотез исходит из того, что совсем небольшие изменения системы атмосферной циркуляции или морских течений могут иметь далеко идущие последствия, стимулируя или, наоборот, тормозя развитие оледенений. Например, известный английский палеоклиматолог Ч. Брукс утверждал, что незначительное охлаждение поверхностных вод океанов может привести к формированию ледникового покрова, соответственно возросшее альбедо поверхности льда определяет общее понижение температур. Далее происходит цепная реакция: площадь ледниковых тел расширяется, усиливается похолодание и масштабы оледенения возрастают. В этой концепции, пожалуй, самым уязвимым звеном является то, что она не может объяснить обратный процесс — сокращение масштабов оледенений. Не ясна также и первопричина, вызывающая развитие этого процесса.

Существует целый ряд гипотез, опирающихся на учет изменений астрономических показателей — эксцентриситета орбиты Земли, плоскости эклиптики и т. д. Все они так или иначе основываются на распределении солнечной радиации на поверхности Земли. Большой вклад в развитие данного направления внес югославский математик М. Миланкович, обосновавший закономерные колебания в поступлении солнечного тепла на поверхность Земли с учетом широтного положения. Эта идея была поддержана американскими исследователями Ч. Эмилиани и Дж. Гейссом, которые наряду с астрономическими факторами учитывали климат. Основная сложность состоит в том, что изменения параметров орбиты Земли тоже недостаточны для объяснения повторяемости оледенений.

К астрономическим гипотезам примыкают многочисленные концепции, предполагающие ритмичность деятельности Солнца. Хотя проявления этих ритмов неоднократно фиксировались в различных природных процессах, все же тесной статистической связи между динамикой солнечной деятельности и изменениями климата за последние столетия выявить не удалось.

Более крупные ритмы с амплитудой порядка 200 тыс. или 400 тыс. лет, выделенные английским геофизиком Дж. Симпсоном, признавались долгое время, но в связи с уточнением представлений по геохронологии плейстоцена они подверглись основательной ревизии. Во всяком случае, теперь распространено мнение, что астрономические факторы могли играть решающую роль только в тех случаях, когда одновременно проявлялось влияние земных факторов и прежде всего горообразовательных процессов.

Таким образом, причины оледенений до сих пор не раскрыты. По всей вероятности, разгадку данной проблемы надо искать в сложном взаимодействии нескольких, а возможно, и многих факторов.

<<< Назад
Вперед >>>

Генерация: 1.685. Запросов К БД/Cache: 0 / 0
Вверх Вниз