Книга: Земля и жизнь

Живое и минеральное вещество

<<< Назад
Вперед >>>

Живое и минеральное вещество

В течение тысячелетий передовые умы человечества бьются над вопросами, что такое материя, каково ее строение. Появление атомистического представления о строении материи, горячим сторонником которого был М. В. Ломоносов, стало важным этапом в развитии знаний. Так, М. В. Ломоносов видел проявление атомного строения вещества в их свойстве нагреваться. Он считал, что теплота - это не что иное, как движение мельчайших частиц тела, а степень нагрева зависит от скорости движения частиц. Открытие и изучение химических элементов показало, что вещества бывают простые и сложные и что имеются возможности разложить одни вещества, получая при этом другие, более простые. Постепенно были открыты химические законы, в частности закон постоянства состава химического соединения, открыто молекулярное строение веществ. При этом доказано, что свойства элементов находятся в периодической зависимости от зарядов ядер их атомов, от величины атомных весов элементов.

Развитие идей Д. И. Менделеева, открытие ряда новых элементов с предсказанными свойствами, открытие электронной структуры атомов Э. Резерфордом и Н. Бором привели к установлению единой природы всех химических элементов. Затем были вычислены размеры электронов, определен состав ядер, и новая физика научилась превращать одни элементы в другие.

Развитие материалистической мысли и создание К. Марксом и Ф. Энгельсом диалектического материализма привело к идее развития, к идее непрерывного обновления всего существующего. Диалектический материализм считает способность к развитию неотъемлемым свойством материи. Материалистическое миропонимание приводит нас к идее вечной и неизменной первоосновы всех вещей, к идее существования предметов и явлений объективно, т. е. независимо от нашего сознания. В. И. Ленин писал, что материя есть объективная реальность, данная нам во в ощущении. Основной причиной того, что материя действует на чувства, является то, что она находится в движении.

Открытие радия и радиоактивности необычайно обогатило физику и химию, вплотную приблизив человечество к пониманию вещества Земли. Ядерная физика еще развивается на этой основе и не сказала своего последнего слова, тем не менее она привела к учению об изотопах в природе и позволила в содружестве с химией, биохимией и геохимией подойти к пониманию сущности связей между элементами мертвой и живой природы, а также внутри этих двух категорий веществ.

В свете новых взглядов на живое вещество природы основным моментом оказывается понятие об энергетической стороне явлений жизни.

В. И. Вернадский считал, что вся биосфера, во всех ее формах находится в непрерывном движении. Температура свободной тропосферы (нижней, охватываемой жизнью зоны атмосферы Земли) кверху понижается, температура гидросферы понижается книзу, температура литосферы (верхнего слоя земной коры) постепенно повышается с глубиной. В тропосфере азот и кислород находятся в определенном соотношении. Под землей быстро исчезает кислород и существует "кислородная поверхность", ниже которой располагается азотная подземная атмосфера.

Вещество биосферы В. И. Вернадский делил прежде всего на две крупные категории: "живое" вещество (совокупность всех живых организмов), богатое действенной энергией, и "косное", действенная радиоактивная и химическая энергия которого в подавляющей ее массе, в ходе исторического времени, ничтожна. Живое вещество охватывает и перестраивает все химические процессы биосферы. В. И. Вернадский поэтому считал, что "живое вещество есть самая мощная геологическая сила биосферы, растущая с ходом времени (разрядка моя - А. В.). Оно не случайно и независимо от нее, в ней живет, она есть проявление физико-химической организованности биосферы".

Обратимся к рассмотрению тех химических элементов, которые являются общими как для живого вещества природы, так и для косного. Эти общие элементы, поскольку они являются основными компонентами веществ - носителей жизни, называются биофильными. Их не так много, хотя вообще в состав живых тел входит много десятков других элементов, но обычно в ничтожных количествах.

Биофильные элементы следующие: углерод, азот, водород, кислород и сера. Как выяснено, "биофильные" свойства этих элементов нужно понимать и рассматривать с оговорками. Суть в том, что почти все известные химические элементы оказались смесями изотопов, почти не отличающихся друг от друга по своим химическим и физическим свойствам. При этом не все изотопы элементов, упомянутых выше, имеют равное отношение к процессам жизни.

Стремление понять вещественный состав Земли, прежде всего той ее части, которую называют биосферой, привело исследователей - химиков и минералогов, а также и геологов - к изучению распространения химических элементов в природе, в земной коре, к поискам закономерностей на основе геологической карты.

Геологическая карта призвана показать распространение тех или иных горных пород по их выходам на дневную поверхность и искусственным выработкам и буровым скважинам, с указаниями на их геологический возраст и вещественный состав, на различные взаимоотношения этих пород.

Для пород земной коры было очень важно учесть распространение в ней химических элементов. В результате трудов В. И. Вернадского, Ф. У. Кларка, А. Е. Ферсмана, их учеников и последователей возникла и непрерывно расширяется таблица количественной распространенности химических элементов, или, как говорят геохимики, "кларков" элементов. Отсюда возникло представление о среднем составе земной коры, на фоне которого местные более высокие или более низкие концентрации представляли практический или научный интерес. Высокие концентрации практического значения - это месторождения полезных ископаемых. Поэтому геохимия оказывает помощь практической геологии, на материалах которой она развивалась и развивается, дополняя ее специальными исследованиями.

Крайне важно, что в то же время родилась идея об эволюции вещества земной коры. В. И. Вернадский высоко расценивал работы в этом направлении, имея в виду возможность глубокого изучения вещества Земли и полагая, что химический атомный состав его не есть случайное явление, что он связан с многообразными свойствами атомов в физическом поле, прежде всего в энергетическом - термодинамическом.

Количественные отношения атомов Земли были отражены в так называемой таблице Филипса - Кларка - Фохта. Она показала, что атомный состав Земли тождествен составам поверхностных слоев звезд и Солнца.

Живые организмы В. И. Вернадский не считал в основном углеродными. Он полагал, что с геохимической точки зрения живое вещество есть кислородное вещество, богатое углеродом, и лишь иногда оно является углеродистым и содержит более 10% углерода по весу. Значение углерода в живом веществе, в организмах, не объясняется его количеством, но есть функция его химических свойств.

Замечательную особенность взглядов В. И. Вернадского составляет единство его подхода к представлениям об элементарном составе живой и косной природы. Выяснилось, что элементы, слагающие тела организмов, свойственны природе вообще, не только живому, но и косному ее веществу, в частности минеральному. Отсюда естественным было категорическое признание постоянства химического облика земной коры в течение геологического времени, признание того, что "средние количества и состав живого вещества оставались приблизительно одинаковыми в течение всего этого непостижимого по длительности времени". Поэтому он признавал, что количество живого вещества, по-видимому, является планетной константой (постоянной величиной) со времени архейской эры, т. е. за все течение геологического времени.

Следует отметить, что и ранее некоторые мыслители, в частности в XVII в. Ж. Бюффон, высказывались за идею об относительной неизменности количества живого вещества. Между тем и в настоящее время нет точных данных об изменениях количества живого вещества во времени и потому решение этого вопроса пока оказывается невозможным.

Рассматривая элементарный состав живого вещества, В. И. Вернадский разбил элементы в зависимости от их распространения на декады:


В составе тел всех ныне живущих организмов мы находим кислород, водород, серу, азот и в особенности углерод. Эти элементы и ряд других, присутствующих в меньших количествах, железо, марганец, медь, образуют простые и сложные химические соединения, главнейшими из которых являются белковые. Из простых соединений следует отметить воду, углекислоту, метан, угарный газ, закись азота и другие, свойственные, оказывается, не только живым организмам, но и так называемой "мертвой природе".

Упомянутые элементы и их простые и сложные соединения слагают тела организмов, но все они также свойственны и окружающей их среде. Элементы и соединения извлекаются организмами из среды с образованием нужных им веществ для построения соответствующих клеток и тканей, а затем в процессе обмена со средой и после смерти организма они возвращаются снова в состав среды.

Таким образом, органическая жизнь базируется на химических элементах и соединениях, являющихся общими и для нее и для окружающей "мертвой природы". Отсюда возникает один из важнейших законов биологии - "единство среды и жизни", прежде всего в вещественном понимании.

Основной признак каждого живого существа - способность усвоения соответствующих элементов и веществ природы - способность к ассимиляции. Ф. Энгельс считал ассимиляцию существенной функцией жизни.

Элементарное вещество, обусловливающее жизнь,- белок, или комплекс белковых соединений. По Ф. Энгельсу, белок - совершенно бесструктурное вещество, обнаруживает все основные свойства жизни, осуществляемой путем ассимиляции: пищеварение, выделение, сокращение (раздражимость, реакцию на раздражение), размножение. Великий мыслитель считал, что должны были пройти тысячелетия, пока не создались условия, необходимые для следующего шага вперед, когда из этого бесформенного белка благодаря образованию ядра и оболочки возникла клетка. Он полагал, что сначала возникли бесконечные количества бесскелетных бесклеточных и клеточных протистов (простейших), о которых говорит наука палеонтология и которые преобразовались постепенно в первые растения, в первых животных. В настоящее время на первом месте в этом перечне мы ставим микроорганизмы - бактерии и близкие к ним формы жизни.

Сущность связи организма со средой состоит в энергетике. Всем организмам свойственно постоянное извлечение из среды энергии, которая затем используется организмом в его многообразных функциях, прежде всего на построение его тела, на движение. Питание в общем смысле и есть тот путь, который позволяет организму постоянно и непрерывно пополнять запас энергии, и как только приток энергии по каким-либо причинам прекращается - организм погибает. В древнейших водных бассейнах или во влаге древнейших почв на суше, где возникали и развивались наидревнейшие формы жизни, она могла развиться путем усвоения в основном неорганических веществ, которые оказывались способными к окислению их несвободным или свободным кислородом. Это могли быть углекислота, метан, соли, растворенные в воде, которые, попав в организм, способны были окисляться, причем выделялась свободная энергия (тепловая и химическая), а продукты окисления или шли на построение тела и его оболочки, или извергались обратно в состав среды, где они чаще шли в осадок, на дно. Накопление органических веществ, развитие органической жизни обусловило и другой путь извлечения свободной энергии - окисление органических веществ, относительно более эффективное в энергетическом отношении, чем окисление неорганических соединений.

Как известно, академик А. И. Опарин создал гипотезу происхождения жизни на Земле именно на основе представлений о первоначальном уплотнении органических соединений на Земле, возникших химическим путем, до образования белка. Белок сгустился в капли - коацерваты, которые, усваивая тоже белковые соединения среды, стали первыми живыми клетками. Не исключается, что жизнь, массово и беспорядочно, удачно и неудачно, возникавшая и отмиравшая, шла и тем и другим путем, а также и промежуточным, т. е. с одновременным использованием и неорганической и органической пищи (миксотрофы).

Растение, получая энергию солнечных лучей извне, использует ее на разложение воды, на ассимиляцию углекислоты из атмосферы, на построение из синтетически создаваемых углеродных соединений нужных веществ в процессе своего роста и размножения. Клетка железобактерии, ассимилируя из среды растворенные в ней закисные соединения железа или марганца, окисляет их в окисные соединения, выделяющиеся в твердом виде или в состав среды, или на поверхности клетки в виде чехла. Ржавая железистая вода есть результат растворения и окисления железа бактериями "ржавчины" (в технике это называется коррозией металлов). Такие организмы, использующие неорганические соединения для своего существования, называются автотрофами. Организмы, питающиеся органическими соединениями, как, например, гнилостные бактерии, а также животные называются гетеротрофами.

В. И. Вернадский выделял также промежуточный тип существ - миксотрофы - организмы, способные питаться за счет неорганических и органических соединений. Можно полагать, что морской моллюск - устрица, способная при весе тела около 40-50 г накапливать за несколько лет оболочку из углекислого кальция (раковину) весом до 3 кг, принадлежит именно к миксотрофам. У всех организмов важная роль принадлежит оболочке. Сквозь оболочку внутрь организма проникают вещества из среды, если они внутри него отсутствуют. Из организма выводятся через оболочку вещества, содержание которых в среде более низкое.

Первичный белковый комочек мог стать живым организмом лишь во взаимодействии с энергией, поступавшей извне или образовывавшейся внутри него. Первое имеет место у зеленых автотрофов - всех растений Земли, второе - у других организмов. Существование первичных сгустков только из белковых соединений, ставших организмами, в мировом древнейшем океане или в древнейших почвах на суше маловероятно. Несомненно, имелась, как и теперь, переходная - вирусоподобная, "ультрамикробная" стадия с весьма менявшимися свойствами, сходная то с организмами, то с мертвой материей. Ведь известны вирусы кристаллизующиеся, способные переносить и крайне низкие и высокие температуры и т. д. Для белка же 60°С - предел, при котором он свертывается и ни к какой жизнедеятельности уже не способен. Веществом первичных "вирусов" - пробионтов, зародышей первичной жизни в геологическом прошлом, могли быть различные металлоорганические соединения, каких в природе существует бесчисленное разнообразие. Как известно, они образованы при участии ряда металлов из группы "биофильных". При этом роль атомов металлов в сложных металлоорганических соединениях - служить мостиками, связями между частицами органических соединений, вследствие чего молекулы металлоорганических соединений могут быть весьма сложными и обладать разнообразными свойствами.

Известно, что бактерии, в частности "железные", способны к жизнедеятельности в определенном температурном диапазоне, в котором они действительно процветают, интенсивно размножаются. Следовательно, температура среды в какой-то момент "поджигает" жизненный процесс. Вещества, извне поступающие в клетку, развязывают внутренние силы, как бы служа для них запалом, стимулятором. Так, бактерия может из недеятельного состояния перейти в деятельное. Так могли возникать и многообразные первичные организмы. Удачно создавшиеся - существовали, неудачные - исчезали в средах далекого прошлого Земли, способствуя накоплению органического и минерального вещества в водных бассейнах и в осадках. Наладившийся обмен веществ означал жизнь, нарушившийся - гибель.

Естественный отбор организмов, приспособленных к среде и условиям обитания в ней, далее уже моделировал первичный сгусток жизни - живого вещества, обусловливая дальнейшую эволюцию жизни. Возьмем пример хотя бы из истории техники. Создателям бензинового мотора далеко не сразу, конечно, удалось наладить режим его работы, чтобы превращать внутреннюю химическую энергию горючей смеси (пары бензина + воздух) в тепловую, способную производить работу. Но когда мотор, засасывая регулярно "питание", ритмично заработал, он как бы "ожил". Подобно этому возникла и жизнь.

Живое и минеральное (косное) вещества находятся в природных условиях во взаимосвязи и взаимодействии в процессах жизнедеятельности автотрофных, полуавтотрофных, миксотрофных и гетеротрофных организмов. В. И. Вернадский, который был первым исследователем, обратившим серьезное внимание на геологическое значение явлений жизни, предложил понятие о живом веществе, о биосфере - области развития этого вещества с соответствующими энергетическими процессами, сопровождающими его превращения. Поверхностную оболочку Земли он предложил рассматривать не только как область распространения вещества биосферы, но и как область энергии, причем он учитывал влияние на развитие живого вещества геологических и геохимических процессов, солнечных и космических излучений. В. И. Вернадский говорил о роли лучистой солнечной энергии для существования жизни и для геологических явлений - движения воздушных масс, морских водных масс (течения), морской волны, берегового прибоя; отмечал теплорегулирующую способность водных масс морей и океанов, играющую огромную роль в явлениях погоды и климата и связанных с ними процессах жизни и выветривания; в живом веществе, совокупности живых организмов Земли, видел преобразователя лучистой энергии Солнца в химическую энергию биосферы, где в реакциях фотосинтеза создается бесконечное число новых химических соединений.

А. И. Опарин в своем замечательном труде "Возникновение жизни на Земле" нарисовал очень убедительную картину химической эволюции органических веществ, предшественников "живого вещества" В. И. Вернадского, путем трех основных типов реакций: конденсации первичных органических веществ химического происхождения, полимеризации - гидролиза, и окислительно-восстановительной реакции. А. И. Опарин создал много новых интересных представлений о возникновении жизни, но он недостаточно учитывает роли в этом процессе солнечных и космических излучений, чему В. И. Вернадский придавал большое, почти ведущее значение.

Нижнюю границу области жизни - биосферы - В. И. Вернадский определял на глубине в три и более километра от дневной поверхности. Он делал это на основании планетного значения микробного живого вещества, главным образом анаэробного (живущего в бескислородной среде), достигающего таких глубин. И на всю мощность биосферы, от этой границы в недрах Земли до нижних слоев атмосферы он распространял проявления биогенной миграции химических элементов, биогеохимической энергии организмов, которые, являясь "закономерной функцией биосферы", распределены в ней в строгой связи с ее структурой.

По состоянию знаний того времени о биохимических процессах В. И. Вернадскому о многом приходилось говорить в общей форме. Большей частью он не конкретизировал свои представления о деятельности организмов в круговороте веществ. Этой области вопросов посвятил большие труды академик А. П. Виноградов, уделивший серьезное внимание химизму организмов моря. Ему принадлежит и первая, единственная в своем роде, замечательная схема взаимосвязи между живым и минеральным (косным) веществом для условного эволюционного ряда современных организмов, приведшая его к идее "пирамиды" минерального субстрата жизни, к идее постепенной химической эволюции живого вещества, освобождения его от минерагенной части химических элементов, постепенного отхода организма от использования биогеохимической энергии и перехода к использованию энергии только биохимических превращений. Чем выше уровень химического развития живого однородного вещества, тем меньшее участие в его составе принимают минерогенные химические элементы.

Взаимосвязь жизни и среды обитания В. И. Вернадский иногда определял понятием "биокосное тело", как, например, почва, вода пресного водоема и т. д. Это области, зоны и участки биосферы, где живое вещество перерабатывает геологическую оболочку биосферы, меняет ее физические, химические и механические свойства. В связи с этим "косным" - неживым - В. И. Вернадский называл главную массу вещества биосферы, не входящую в живое вещество,- ее горные породы и минералы, химические элементы которых в процессе биогенной миграции атомов могут "входить в естественные живые тела и уходить обратно". Это проявляется в процессах дыхания, питания, размножения, выделений, свойственных живому веществу, которое он считал "закономерной функцией" биосферы, подчеркивая постоянную теснейшую связь между организмом и средой, что, как он отмечал, "не всегда правильно учитывалось" исследователями. В. И. Вернадский отмечал, что биокосные тела характерны для биосферы. К ним он относил, в частности, и зону выветривания горных пород, которое считал биокосным процессом, подчеркивая биогеохимическую природу разрушения горных пород в коре выветривания.

Мы поставили перед собой задачу проследить влияние живого вещества на минеральное - косное, на основании прежних и новых данных о породо- и рудообразующей деятельности ископаемых автотрофных организмов. Новые материалы повлекли за собой новые выводы, частью очень интересные, касающиеся ряда смежных научных дисциплин. В связи с этим возникла и неотложная необходимость внесения существенных поправок в некоторые взгляды, а именно по вопросу происхождения некоторых горных пород и минералов. Но следует при этом отметить, что наши представления о связи живого и минерального вещества в природе не выходят за общие рамки, гениально очерченные В. И. Вернадским. Мы можем предложить лишь ряд конкретных представлений о некоторых биокосных телах, телах, сложенных живым и минеральным веществом.

Коснемся теперь более детально организмов - концентраторов минерального вещества, минерогенных элементов, косного вещества, расположенных в основании "пирамиды" А. П. Виноградова. Их существовало и существует в природе множество. Есть концентраторы специализированные - автотрофы и работающие биогеохимически, так сказать, "по совместительству" - миксотрофы.

Алюминий химически осаждается в слизистой оболочке бактериями, например рода кренотрикс, содержащими его до 17,7%. Кремний усваивается диатомеями, кремневыми губками и др. Кальций осаждается разнообразными водорослями (синезеленые, красные, харовые и др.). Водоросли осаждают карбонат кальция, поглощая СО2 и Са(НСО3)2. Известен вид бактерий, осаждающих СаСОэ внутри клетки. У других карбонат кальция выделяется в виде кристаллов при распаде их клеточного вещества. Кальций в огромных количествах, как это хорошо известно, потребляют и позвоночные животные, строящие из фосфатов кальция и кальцийорганических соединений свой скелет и различные части организма.

Магний накапливается литотамниями, некоторыми мшанками и др.

Железо, кроме представителей железобактерий, усваивается многими представителями водорослей. По существу оно используется всем миром животных.

Марганец усваивается целым рядом марганцевых организмов, такими как лептотрикс, некоторыми диатомовыми.

Фосфор, в виде фосфатов, отмечался В. И. Вернадским в составе раковин лигнул - брахиопод с роговой раковиной. Роль бактерий в его накоплении ранее исследователями не учитывалась.

Сера является источником энергии для колоссального количества организмов различного систематического положения, от бактерий (тионовые, пурпурные и др.) до высших организмов, поскольку сера непременная составная часть белка.

Из упомянутых организмов для нас особо интересны автотрофные, к которым В. И. Вернадский относил такие организмы, которые "берут все нужные им для жизни химические элементы, в современной биосфере, из окружающей их косной материи и не требуют для построения своего тела готовых органических соединений другого организма". Среди автотрофов он различал две группы: зеленые хлорофильные организмы - "главный механизм биосферы, создающий фотосинтезом органические тела", "источник действенной химической энергии биосферы" - и мир автотрофных бактерий.

Массу зеленых автотрофов В. И. Вернадский считал количественно близкой к половине животного живого вещества. Важно отметить, что количество живого вещества, собранное в форме автотрофных бактерий, он считал гораздо меньшим. Об этих бактериях он говорил, что они рассеяны всюду: в почвах, иле водных бассейнов, в морской воде,- но что "нигде нет тех их количеств, которые были бы сравнимы с количеством автотрофной зелени суши, не говоря о зеленом планктоне океана".

Он признавал при этом, что "геохимическая энергия бактерий гораздо выше той же энергии зеленых масс... является максимальной для живых существ". Причину же "малого скопления" живой материи в этой форме он считал связанной с недостаточными количествами находящихся в биосфере не вполне окисленных и неокисленных соединений азота, серы, железа, марганца, углерода. По его мнению, автотрофные бактерии находятся ныне в состоянии непрерывного недостатка пищи, "недоедания". Он отмечал своеобразное "вторичное равновесие между бактериями, восстанавливающими сульфаты и их окисляющими, как это, например, наблюдается в озерных грязях, сырых почвах, морской воде. Такое же равновесие он отмечал между бактериями, окисляющими азот, и гетеротрофами, раскисляющими нитраты. Поэтому главную массу живого вещества В. И. Вернадский считал сосредоточенной в освещенной Солнцем части нашей планеты, где собраны гетеротрофные организмы и автотрофные бактерии, тесно связанные с продуктами жизни зеленых организмов и свободным кислородом. Из этой зоны автотрофы проникают и в темные области биосферы, где нижнюю границу для анаэробов он определял до глубины в 500 м и где размах их жизнедеятельности считал ограниченным.

В наших исследованиях мы начали подбирать материалы по рассеянному, законсервированному в горных породах органическому веществу, ранее вообще не изучавшемуся, которое должно было иметь местами весьма сложный состав. Его изучение позволило бы нам подойти к представлениям о составе исходного первичного органического вещества, к химическому составу самих древних организмов. Это органическое вещество осадочных горных пород во многих случаях не связано с составом видимых остатков организмов, обычных объектов палеонтологического исследования. Поэтому нам пришлось в ряде случаев принять его отчасти за остаточное органическое вещество бактериального происхождения. Местами оно оказалось четко связанным с веществом ископаемых синезеленых водорослей.

Зародившаяся мысль о значительной роли ископаемых древних автотрофных и иных бактерий в породо- и минералообразовании привела нас в некоторые районы Тянь-Шаня, в горные районы Сибири - к разрезам древнейших осадочных отложений, где мы знали или предполагали аномальные концентрации ряда интересных минеральных веществ. Это были залежи фосфатов в кембрии Каратау (Казахстан), а также слои с осадочными рудами железа и марганца, различные железисто-кремнистые породы, известняки различных типов. Как оказалось, очень интересные материалы имеются в районах известных контактовых месторождений железа и месторождений марганца неясного происхождения. Интересные материалы дало и изучение процесса цементации некоторых древних обломочных пород, а также процессов выветривания горных пород, в том числе и интрузивных.

Эти материалы привели к необходимости пересмотреть взгляды на породообразующую роль микроорганизмов, особенно ископаемых. Первое место среди них теперь приходится приписывать бактериям.

Изучая деятельность морских денитрифицирующих бактерий в Атлантическом океане, Г. Дрю открыл формы, осаждающие из морской воды карбонат кальция. Эти бактерии оказались денитрифицирующими и декальцинирующими. Они как бы снижают содержание нитратов в морской среде, ограничивая тем самым масштаб жизнедеятельности фитопланктона. Бактерии проявляют свою "деятельность" в районах тропических и субтропических морей и океанов. Оптимальная температура для них - около 29,5° С. Рост их отмечается при температуре выше 10°, при 33°С он начинает замедляться. Образуемый ими карбонатный осадок в виде белого облака - мути - медленно оседает (в лабораторных условиях) или остается в течение длительного времени во взвешенном состоянии. Такое явление можно наблюдать и в СССР на оз. Балхаш. Осадок получается или иловидный, или в виде мелких шариков типа оолитов, если в воду добавлять мелко раздробленный гипс. Шарики эти, в частности, со дна Большого Соленого озера в Северной Америке, состоят из арагонита с постепенными переходами в кальцит. Кальцит иногда образовывался непосредственно из известковой мути при отстаивании пробы морской воды, причем отмечалось выделение сероводорода, которое происходило при участии бактерий.

Советские микробиологи полагают, что выделение карбоната кальция бактериями из морской воды и других минерализованных сред происходит за счет сульфата кальция (гипса) в процессе его разрушения, иногда с получением конечного продукта в виде серы. Ход реакций представляется таким:

CaSО4 ? CaS CaS + СО2 ? СаСО3 + S

Таким образом, выпадение карбоната кальция, а иногда и магния из природных водных сред приходится считать связанным в той или иной степени с жизнедеятельностью бактерий. Процесс этот в морях геологического прошлого некоторые литологи и геологи иногда недооценивают, иногда совсем не принимают во внимание как массовое явление.

Как известно, карбонатные породы начали входить в состав осадочных отложений непосредственно с архейского времени, с момента начала формирования древнейших нормальноосадочных пород. Если биогенное происхождение многих известных слоев и горизонтов известняков, например: рифовых, археоциатовых, коралловых, брахиоподовых, фораминиферовых и прочих, не вызывало никаких сомнений, то в отношении многих толщ и свит таких "плотных" пород вопрос о генезисе не всегда был ясен. Чем древнее карбонатные породы, тем чаще мы встречаем так называемые "немые" слои и толщи, лишенные видимых остатков ископаемых организмов. Подобные породы мы находим, в сущности, во всех геологических системах. Слои с органическими остатками в природе все же редкость, но там, где они имеются, мы уделяем им преимущественное внимание, в результате чего наши коллекции относительно богаче остатками ископаемых макроорганизмов, чем отображаемые ими естественные разрезы соответствующих геологических свит и серий.

Между тем тщательные поиски органических остатков часто позволяют охарактеризовать палеонтологически многие толщи древних морских отложений, в которых обнаруживаются остатки породообразующих синезеленых водорослей в виде строматолитов, онколитов и даже иногда плотных внешне пород. Тем не менее еще бытует мнение о распространенности "немых толщ" и вследствие этого часто некоторые морские осадки признаются имеющими химическое происхождение, что не всегда правильно.

Известно, что пересыщенный раствор карбоната кальция в морской воде мог бы получаться лишь при выпаривании последней на 75%, что и осуществляется в природе, но не в нормально морских, а в лагунных условиях. Выпадение карбоната кальция при этом может сопровождаться осаждением сернокислого кальция в виде гипса. Некоторые исследователи, подсчитывая растворимость карбоната кальция в морских водах, полагают, что и там могут возникать обстановки насыщения среды этой солью, т. е. условия для ее химического выпадения. Но нужно учитывать запасы в морских водах свободной углекислоты, способной растворять твердый карбонат кальция. Таким образом, от идеи массового химического осаждения морских известняковых осадков приходится решительно отказаться. Главную массу их приходится определенно считать микробиогенной. Следовательно, мы должны поддерживать ранее высказанные взгляды Мэррея, В. И. Вернадского, Б. Л. Исаченко, А. П. Виноградова и других.

Изготовляя тончайшие прозрачные шлифы из различных известняков древнейших толщ, мы смогли в ряде случаев, окрашивая препараты, различать палочковидные, кокко-бацилловидные тельца, в которых нельзя не узнавать фоссилизированных, пропитанных карбонатом кальция клеток каких-то породообразующих бактерий. Открытые нами палочковые бактерии в кембрийском известняке имеют толщину около 1 pH при длине в 2,0-2,5 ?.

Нам думается, что выпадение карбоната кальция из морской воды происходит не при косвенном участии бактерий, как это представляли себе многие исследователи ранее, а в теле бактерий, в процессе превращения бикарбоната кальция морской воды в кальцийорганическое соединение, близкое к кальциту. Поэтому образование карбонатной мути, известкового илового осадка в теплых морях, вероятно, есть процесс осаждения отмерших клеток бактерий, пересыщенных твердым минеральным веществом в виде кальцийорганических соединений. При этом органическая оболочка этих сгустков на пути ко дну бассейна, в осадке, а иногда даже после превращения его в известняк, защищает их более или менее длительно от перераспределения вещества. Последнее происходит, несомненно, лишь после полного распада органических веществ клетки с выпадением в осадок карбоната кальция в виде мелких кристалликов. Вследствие этого нам и удается наблюдать иногда подобные образования в очень древних породах.

По данным исследований академика Б. Л. Исаченко, изучавшего условия образования известкового ила в озере Севан (Армения), а также известковых образований в горячих источниках, существует ряд видов бактерий, способных выделять углекислый кальций сначала в виде кальцийорганических соединений, потом в виде бесформенных скоплений карбоната кальция, затем в кристаллической форме кальцита или арагонита. Иногда образуются округлые тела - сферолиты, или оолиты, радиально-лучистые или концентрически наслоенные. Внутри последних исследователь обнаруживал клетки бактерий. Поэтому Б. Л. Исаченко полагал, что таким путем и в древних пресных и соленых водоемах могли образовываться известковые отложения.

Принимая такой взгляд, мы должны допустить, что группа денитрифицирующих (высвобождающих азот) бактерий является одновременно и накопителем в биосфере органического вещества. Этого нельзя хотя бы отчасти не связать с одновременным выделением сероводорода, т. е. с деятельностью сероводородных бактерий, разрушающих при этом белковые вещества отмерших клеток "кальциевых" бактерий.

Таким образом "немые", плотные, массивные и слоистые известняки, часто перекристаллизованные, лишенные, следовательно видимых остатков животных и растений, мы иногда имеем основание считать микробиогенными образованиями, биолитами, биокосными телами, что указывает на колоссальную роль кальциевых бактерий в формировании живого вещества - вообще органического вещества в биосфере. Если учесть, что эти организмы усваивают большую часть приносимого в моря и океаны с суши кальция (по Кларку, 577 670 000 т кальция ежегодно!), то живому веществу кальциевых бактерий будет принадлежать видное место среди породообразователей - концентраторов минерального вещества.

К "кальциевым" бактериям, по их роли в породообразовании, приближаются лишь карбонатные водоросли группы синезеленых, в ископаемом состоянии представленные изучаемыми нами строматолитами, скопления которых, особенно в древнейших отложениях, часто наблюдаются в виде слоев и толщ мощностью во много сотен метров. В протерозое и кембрии эти образования формировались в изобилии, местами до 40-50% по отношению к микробиогенным карбонатным породам. Синезеленые водоросли живут в тесном общении с различными бактериями, чаще с железобактериями. Формирование живого вещества здесь завершалось почти полной фоссилизацией остаточного материала в виде упомянутых строматолитов - продуктов их многолетней жизнедеятельности. Следует думать, что экзотермический характер реакции выделения твердого карбоната кальция в организме играл также свою роль и в энергетическом балансе некоторых древнейших водорослей, как это, несомненно, имело место в слоевищах мезозойских и более поздних кораллинацей.


Микроскопические синезеленые водоросли образовывали в синийское время часто мощные толщи, состоящие из ветвящихся слоистых известковых колонок. Мощность слоя, часть которого показана на рисунке, составляла 36 м. Фото автора

В связи с отмеченным выше мы можем позволить себе по-новому взглянуть и на процесс накопления карбоната кальция многими беспозвоночными, например в виде раковин моллюсков, брахиопод, кораллитов кораллов, скелета археоциат, спикул известковых губок и т. д. Клетки мантий и соответствующих других тканей этих организмов, живших и живущих в той же морской среде, восстанавливая тот же бикарбонат кальция, должны получать и освобождающуюся при этом энергию. Мы можем вспомнить при этом о безобразно толстой, неуклюжей многослойной раковине некоторых современных и ископаемых устриц, о чем выше мы уже говорили. Такие раковины изучать очень интересно, можно видеть, как она развивается, как непрерывно утолщается корка за коркой, иногда даже без прямой связи с ростом мягкого тела животного. Чем вызвано это явление? Поскольку этот процесс непрерывен, хотя и идет в течение года с неодинаковой скоростью, он больше похож на процесс питания, чем на тенденцию к защите от механических воздействий извне. Некоторые ученые думают, что такой устрице нужно увеличивать свой вес, чтобы ее "не беспокоила" волна или течение. Естественный отбор мог бы создавать и такие организмы, но он бессилен создать упомянутую функцию мантии, если она не возникла в ходе эволюции данной группы для выполнения определенной физиологической задачи. А эта задача для карбонатотлагающих организмов - превращение бикарбоната кальция в карбонат (экзотермическая реакция!). Поэтому в жизненном цикле устриц предполагаемый нами источник энергии (вероятно, исторически первичный) занимает, по-видимому, видное место. В энергетическом балансе других животных, из числа вышеупомянутых, кроме кораллов, тоже постоянно отлагающих карбонат кальция, этот источник жизненной энергии, по-видимому, играет относительно скромную роль в виде "дара предков", в ходе эволюции иногда постепенно утрачиваемого.

Палеонтология дает нам немало таких примеров, до перехода к "бесскелетным" формам, как это намечается у некоторых археоциат к началу позднего кембрия, а также у кораллов.

Таким образом, для нас представляется весьма соблазнительным предположить, что все карбонатотлагающие многоклеточные организмы, не исключая и высших представителей животного мира (с фосфатами кальция в скелете), относятся к числу участвующих в процессе энергетического использования восстанавливаемого ими растворенного карбонатного вещества, т. е. к числу полуавтотрофных, в той или иной степени несвободных от этого примитивного древнейшего источника химической энергии. Исходя из этого, мы получаем новое представление о размахе взаимосвязи между живым и минеральным веществом природы, отличное от наших прежних представлений. При этом мы признаем, конечно, обломочное, а местами химическое происхождение многих известняков. Сидериты, магнезиты, доломиты и другие карбонаты имеют, по-видимому, лишь косвенную связь с деятельностью живого вещества.

В существующих учениях о рудных месторождениях и минералах миграция железа и марганца в земной коре и на ее поверхности часто трактуется в свете чисто химических процессов.

Микробиологические отложения окислов железа и марганца в наземных - дерновых, болотных и озерных условиях известны давно. В изучении этих образований принимали участие многие исследователи.

Поиски морских железобактерий, начавшиеся с экспедиций "Челленджера", вначале были безуспешными. Открытие морских железо-марганцевых бактерий было у нас осуществлено лишь В. С. Буткевичем. Тем не менее многие ученые не сомневались в том, что величайшие скопления железа в земной коре образовались биохимическим путем при незначительном участии в этом процессе водорослей. Так, В. И. Вернадский считал мезозойские железные руды Эльзас-Лотарингии и керченские третичные руды биогенными, вероятно, бактериальными, как и марганцевые чиатурские руды. Большинство исследователей железобактерий склонялось к взгляду, что наряду с биогенными скоплениями железа в осадке бассейнов отлагаются и хемогенные. Железобактерии проявляют жизнедеятельность в трубах водопровода, образуют конкреции на морском и озерном дне.

Биогенный путь состоит в окислении гидратов закиси железа и марганца, а также их бикарбонатов, с переводом, с помощью соответствующего фермента бактерий, двухвалентного железа в трехвалентное, при переработке колоссальных количеств закиси железа, выносимой из недр Земли подземными водами.

Мы предприняли поиски микробиогенных структур в железных и марганцевых рудах осадочных толщ различного геологического возраста, начиная с раннепротерозойского, а также в районах подобных руд первично магматогенного происхождения, в обломочных терригенных породах и в зоне выветривания массивных пород. Результаты оказались замечательными.

Изучая под микроскопом шлиф из образца железистого кварцита бедной руды Кривого Рога (докембрий), мы обнаружили массовые скопления чехликов железобактерий, заключенных в коллоидную кремнеземную массу, по-видимому, и сохранившую эту микробиогенную структуру сгустков окислов железа. Первичные гидроокислы железа в результате метаморфизма представлены теперь магнетитом. Такие же скопления ожелезненных клеток железобактерий в ассоциации с коллоидным кремнеземом мы открыли и в железистых сланцах гребенской свиты протерозоя р. Ангары, нижнего палеозоя хребта Каратау.

Бурые железняки, образование которых В. Линдгрен считал химическим, представляли для нас большой интерес. Мы изучали их по материалам Кокчетавского района в Казахстане, в отложениях, относимых к докембрию. Для всех изученных образцов руд происхождение оказалось общим. В них удалось ясно различить чехлики древнейших представителей железобактерий, из которых слагается вся масса руд. Размеры ожелезненных клеток близки к современным. Изучение бурых железняков и лимонитов многих других месторождений, до так называемых "железных шляп", формирующихся в поверхностных условиях при выветривании сульфидных руд железа, показало решительно то же самое. Все бурые железняки и лимониты прекрасно сохраняют свою микробиогенную структуру. При этом стало ясно, что жизнедеятельность железобактерий, типичных аэробов, осуществлялась и осуществляется и в недрах Земли, в зоне циркуляции кислородных вод. Обычные в магнетитовых месторождениях магматогенного происхождения бурые железняки показали ту же микробиогенную структуру и, следовательно, огромный размах этого процесса.

Мы изучали природные скопления марганца в месторождениях Казахстана, Сибири, относящиеся к нижнему и среднему палеозою, и получили такие же результаты. Руды, за исключением части их, подвергшейся перекристаллизации, оказались сложенными сплошь микротельцами фоссилизированных клеток бактерий, имеющих около 1,33 ? в поперечнике и до 2,0-3,6 ? в длину, соединенных в длинные изогнутые, плотно сплетенные нити. Последние различимы тем лучше, чем "беднее" изучаемая руда, в которой рудная масса перемежается с нерудными, обычно прозрачными, минералами. Общим признаком для отмеченных марганцевых биолитов, как и для железных, по казахстанским и сибирским материалам, является плотное коллоидоподобное их сложение, или волокнисто-лучистое (псиломелан, лимониты), тогда как в поверхностных, "осадочных" условиях чаще распространены конкреционно-желваковые и гороховые - пизолитовые структуры. Природа конкреционных образований, по-видимому, связана с разложением органического вещества бактериальных клеток и потерей микробиогенной структуры таких руд.

Микробиогенными образованиями являются и так называемые "дендриты" - налеты окислов марганца на стенках трещин горных пород, вблизи от скоплений марганцевых руд и минералов. Природа рисунка дендритов, вероятно, связана со строением колоний марганцевых и железобактерий. Такого же происхождения, по-видимому, и "пустынный загар" горных пород, нами пока ближе не изучавшийся. Железистый цемент красноцветных песчаников, например, пермского возраста с р. Шугор (бассейн Печоры), оказался массовым скоплением между песчинками породы фоссилизированных телец железобактерий, пропитанных окислами железа. Такое же происхождение имеют различные охры, ржавчины, распространенные в природе в трещинах горных пород, в карстовых полостях, образовавшихся в процессах выветривания пород, где бактериям, несомненно, принадлежит ведущая роль.

Постоянное присутствие органических веществ, часто в виде углистой массы, в фосфоритовых слоях Каратау давно уже привлекало к себе внимание, но выяснить его природу и происхождение самих фосфоритов мы смогли тоже лишь в последние годы.

Накопление фосфатов в осадках до сих пор объяснялось учеными с помощью двух теорий. Первая, так называемая "биолитная", теория рассматривала образование фосфоритов как следствие массовой гибели организмов и перехода их фосфора в фосфатную горную породу. Согласно второй теории, происходило непосредственное осаждение фосфорных солей из морской воды под влиянием изменения их растворимости. По первой теории, причиной гибели организмов считались изменения уровня моря, направления течений, степени солености в эпохи "перерыва", крупных тектонических движений. Химическая теория родилась в свете представлений о повышенном содержании фосфора в водах морских глубин (до 300 мг/м3). Поднимаясь с гипотетическими восходящими течениями до глубин в 50-150 м, эти воды должны переносить содержащийся в них фосфор и отлагать его вслед за несколько ранее выпадающим в осадок карбонатом кальция. Но ведь здесь фосфор снова становится объектом использования его фитопланктоном, т. е. субстратом для морских водорослей. Верхние слои морских вод всегда поэтому бедны фосфором. Слабое место этой теории - отсутствие в морях массовых "восходящих течений" и отсутствие в нормально морских условиях возможности химического осаждения карбоната кальция, о чем выше мы уже говорили.

Каратауские фосфориты развиты в слоях среднего кембрия на обширной площади. Они представлены здесь плотными массивными ("плита") и оолитовыми разновидностями. Последние очень напоминают внешне бокситы, за которые первоначально они и были приняты. Сначала мы исследовали оолитовые фосфориты, состоящие из серых зерен, сцементированных желтовато-бурым веществом. В этом цементе мы обнаружили железо. Тончайшие шлифы, изготовленные из таких фосфоритов, при увеличениях свыше 2000 раз показали, что оолитовые зерна являются местом массовых скоплений микротелец бактериального облика, имеющих в поперечнике 1,1 ? при длине в 1,3 ?, то соединенных в изгибающиеся нити, то одиночных. Бактериальная природа этих образований несомненна. Ясно, что это прекрасно сохранившие свои очертания окаменевшие клетки каких-то бактерий кембрийского возраста. Интересно, что в центрах оолитовых зерен расположение бактериальных клеток беспорядочное, но по мере приближения к периферии в концентрических наслоениях зерен они начинают принимать более или менее радиальное расположение, указывающее на формирование колоний "фосфатных бактерий" в условиях сезонно изменчивой среды. В составе концентрических наслоений, часто перемежаясь с ними, наблюдаются тонкие пленки, сложенные тельцами железистого состава в виде обогащенных железом отмерших клеток железобактерий. Цемент природы, скрепляющий оолитовые зерна, целиком состоит из ожелезненных клеток отмерших железобактерий знакомого уже для нас облика. Последние развивались позже, в условиях несколько измененного температурного режима.


Бактерии ржавчины при увеличении в 3000 раз. Фото автора

Изучение немногих образцов плотных разновидностей каратауских фосфоритов показало, что они или сплошь состоят из клеток "фосфатных" бактерий и бесструктурной массы карбоната кальция, или же к минерализованным клеткам "фосфатных бактерий" примешиваются тельца клеток железобактерий. Последние в таких случаях местами группируются в виде тонких пленок, линзочек.

Раскрытие природы каратауских фосфоритов позволяет нам думать, что и другие известные месторождения фосфоритов имеют, возможно, такое же органическое, бактериальное происхождение.

Интересно, что при изучении разреза фосфоритовой свиты мы наблюдали смену фосфоритовых слоев марганцево-железистой породой с прослоем карбонатных синезеленых водорослей. Разрез показывает на близость экологических условий для автотрофных бактерий, усваивавших фосфор, железо и марганец, и для синезеленых автотрофов. Известна местная засоренность каратауских фосфоритов терригенным материалом.

О современных бактериях - накопителях фосфатов почти ничего неизвестно. Известны лишь почвенные бактерии, растворяющие фосфаты, фосфатредуцирующие, способные образовывать растворимые соли фосфорной кислоты. Между тем концентрирующие фосфор бактерии в кембрии, по-видимому, существовали. Может быть, подобные организмы формируют и редкие в наше время скопления фосфоритов на дне моря, как, например, в районе южной оконечности Африки.


Остаточные бактериальные микроструктуры боксита. Увеличение в 3600 раз. Фото автора

В круговороте серы, одного из важнейших биогенных элементов биосферы, принимают участие почти все организмы; в недрах земной коры переработкой серных соединений заняты также многие группы бактерий. Наиболее известная группа - сульфатредуцирующие (разрушители сульфатов, в частности гипса) или гнилостные (разрушители органических веществ) бактерии - анаэробы, которые часто обитают в застойных водах и под землей. Следы процессов преобразования серы мы находим уже в горных породах протерозойского и раннепалеозойского возраста, в виде пиритизированных песчаников и сланцев древних толщ Сибирской платформы. Накопление сероводорода происходит микробиологическим путем за счет сернокислых солей моря, с последующим образованием в осадке скоплений сернистого железа (пирит, марказит) в восстановительной обстановке. Существуют различные аэробы, которые с успехом окисляют сульфиды как в зоне земной поверхности - "выветривания" горных пород, так и в зоне окисления земной коры. Часто бактериальная сероводородная зона развивается на разлагающихся органических веществах, при разрушении белковых и иных соединений.

"Обохривание" пиритовых залежей, по нашим наблюдениям, как и окисление магнетитовых, происходит и в недрах (зона окисления) и в субаэральной зоне (в воздушной среде) благодаря жизнедеятельности одновременно железных и тионовых бактерий, с выносом сернокислых солей и с преобразованием вещества пирита и магнетита в лимонит, что хорошо видно в препаратах под мироскопом. Поэтому массовое гипсообразование в ряде случаев мы можем считать связанным с продуктами жизнедеятельности тионовых бактерий.

Естественно, мы здесь не смогли перечислить еще многих других процессов связи между живым веществом природы и минеральным субстратом, играющим косвенно роль источника энергии.

Таким образом, органическая жизнь в природе в ее наиболее примитивных бактериальных формах оказывается теснейшим образом связанной с веществом земной коры. Поэтому было бы совершенно правильно трактовать все подобные материалы, как относящиеся к новой науке - геологической микробиологии. Советские ученые, начиная с В. С. Буткевича, А. И. Самойлова, В. И. Вернадского и Б. Л. Исаченко, уже внесли большой вклад в создание основ этой науки. Интересные и практически важные работы по геологической деятельности микроорганизмов ведутся в Институте микробиологии АН СССР С. И. Кузнецовым и группой его сотрудников, которым удалось значительно продвинуть решение многих вопросов геологической микробиологии.

Множество интересных вопросов, связанных с древней природой, уже разрешено. В данном случае мы могли бы обратить внимание на роль древних организмов как создателей тех или других веществ, в водных средах прошлого, захороненных в горных породах или же принявших характер горных пород. Так, мы знаем, что из вещества наземных и водных растений в геологическом прошлом Земли образовывались различные типы каменных и бурых углей, минерального топлива. Простейшие формы жизни - бактерии и простейшие животные - фораминиферы создавали на дне водных бассейнов отложения извести, из которых потом получались твердые горные породы известняки и мраморы.

Долго казалось загадочным происхождение нефти и горючих газов в недрах. Одни ученые считали, что эти вещества первично в виде простого газа метана (углеводородный газ СН4) являются остаточным компонентом древнейшей атмосферы Земли, еще космической атмосферы, как остаток той атмосферы, которая создалась вокруг нашей планеты во время ее образования, другие - что нефть и газ есть продукты преобразования органического вещества, остатков организмов, в основном различных групп водорослей, в результате его разложения и преобразования при участии соответствующих групп бактерий.

Выяснено, что в древнейших водных бассейнах нашей планеты жизнь на ранних этапах ее развития особенно обильно и разнообразно была представлена бактериями и водорослями. Первые перерабатывали местами и временами огромные массы железа, марганца, серы, азотных соединений, образовывали "осадочные" железные и марганцевые руды, серные руды, свободный азот и т. д. Вторые благодаря энергии солнечных лучей накапливали огромные массы органического вещества за счет углекислоты и воды. При этом за счет воды выделялся в водную среду и атмосферу кислород. Так и возникла современная атмосфера Земли, как известно состоящая на четыре пятых из азота и на одну пятую из кислорода.

Отмиравшее водорослевое вещество в водной среде или уже в осадках разрушалось бактериями. В условиях отсутствия кислорода это разрушение не было полным. При этом образовывались углеводородные газы (соединения углерода с водородом в разных пропорциях). Эти газы частично могли уходить в древнюю атмосферу, растворяться в древних водах. Остатки водорослей в толщах рыхлых осадков на дне бассейнов и углеводородные вещества захоронялись то скученно, то рассеянно и, таким образом, оказывались при погружениях участков земной коры на разной глубине. Будучи более легкими, чем вода, эти вещества всегда были склонными к стремлению перемещения вверх, к земной поверхности в сторону меньших давлений. Местами они встречали препятствия в виде более плотных пород и потому там накапливались. При этом происходило часто их преобразование в более тяжелые углеводородные соединения, в тот сложный комплекс веществ, который мы знаем под названием "нефть" - "кровь" Земли.

Ранее считалось, что чем древнее какая-нибудь нефтеобразующая, нефтеносная толща осадочных пород, тем благоприятнее ее скопления (месторождения) в отношении количества. Так, более ста лет назад разрабатывались на территории Европы нефтяные месторождения Карпат и Кавказа, имеющие возраст в несколько десятков миллионов лет (меловые и третичные отложения). Потом с конца 20-х годов на территории СССР были открыты месторождения нефти и газа, гораздо более древние,- Волго-Уральская нефтяная провинция - "Второе Баку" с возрастом нефтематеринских отложений около трехсот и более миллионов лет (девонские отложения). Несколько лет назад были открыты в Восточной Сибири месторождения нефти и газа в осадочных породах морского происхождения возраста около пятисот пятидесяти миллионов лет (нижнекембрийские отложения). При этом последние оказались не связанными единством происхождения с вмещающими породами (песчаниками и доломитами).

Выяснено, что в наиболее древние геологические времена на территории Восточной Сибири располагались обширные моря, в которых особенно обильно развивались морские водоросли. Остатки этих водорослей часто облекались корками извести и сильно известковистой воды бассейнов. Органическое вещество такого происхождения за сотни миллионов лет суммарно накапливалось (условно подсчитывая) в толщи в сотни метров. Последующее погружение древних (докембрийских) толщ в недра Земли, где господствуют высокие давления и повышенная температура, способствовали движению углеводородов вверх. Так, в ряде районов так называемой Сибирской платформы, между Енисеем и Леной, к северу от Восточного Саяна и Байкальского нагорья в кембрийских отложениях сформировались месторождения нефти и горючего газа.

Итак, органические вещества не могли не образовываться химическим путем при участии физических (электрические разряды атмосферы, ультрафиолетовые лучи Солнца) и химических (уплотнение, синтез молекул) явлений в более сложные соединения (в белковые, в аминовые и нуклеопротеиновые кислоты) А это при участии химической или лучистой энергии должно было привести к возникновению жизни. При этом роль жизни в геологических процессах оказывается по материалам геологов и палеонтологов очень значительной.

<<< Назад
Вперед >>>

Генерация: 5.030. Запросов К БД/Cache: 3 / 0
Вверх Вниз