Книга: Земля и жизнь

Земная кора и палеонтологическая летопись

<<< Назад
Вперед >>>

Земная кора и палеонтологическая летопись

Геология - наука о Земле - изучает происхождение нашей планеты и ее развитие, в особенности развитие ее твердой оболочки - земной коры и проявлений на ней жизни с ее геологической деятельностью.

Геология - наука историческая. Геологическая наука в настоящее время сильно разветвилась, превратившись в комплекс наук. Это: историческая геология, изучающая историю Земли; физическая геология, изучающая геологические процессы на Земле и их влияние на строение земной коры; палеонтология - учение об ископаемых организмах, об их морфологии и развитии; биостратиграфия - наука о руководящих ископаемых организмах, как вехах геологического времени, помогающих расчленять вмещающие отложения на относительно маломощные серии, свиты и горизонты, а также сопоставлять отложения разных районов; учение о фациях - наука об условиях формирования осадочных горных пород и полезных ископаемых; петрография - учение о минеральном составе, структуре и сложении горных пород изверженного происхождения; литология - учение об осадочных горных породах, их составе и свойствах; наука о рудных и нерудных полезных ископаемых; гидрогеология - учение о подземных водах, их составе, движении и геологической деятельности; инженерная геология и гидрогеология - наука о грунтах, горных породах и подземных водах, связанная с задачами строительства; минералогия - наука о минералах, их составе, свойствах и практическом применении; кристаллография - наука о кристаллах; геофизика - учение о физических явлениях Земли, о методах поисков полезных ископаемых и изучении геологических структур; геотектоника - учение о движениях земной коры и их результатах; геохимия - учение о химическом составе геологических образований, о поведении химических элементов и их изотопов в земной коре во времени и пространстве; абсолютная геохронология - наука, имеющая целью определение абсолютного возраста горных пород и минералов на основе изучения продуктов распада радиоактивных элементов, включенных в минералы и горные породы при их образовании.

Все эти науки характеризуются своими особыми объектами и методами исследования. При этом геологический цикл наук теснейшим образом связан, с одной стороны, с циклом наук химических, изучающих химические элементы, их изотопы и их поведение в различных соединениях и процессах, с другой стороны - с циклом наук физических, изучающих явления внутри Земли, на ее поверхности и в окружающем космическом пространстве; и с третьей - с циклом биологических наук благодаря палеонтологическим материалам, часто находимым в слоях осадочных пород.

Для успеха палеонтологических исследований оказываются часто очень важными следующие науки: физиология животных и растений, микробиология (бактериология), биохимия, биогеохимия (учение о геохимической роли организмов), сравнительная остеология и т. д. Можно добавить, что и сама палеонтологическая наука разветвляется на эволюционную теоретическую и прикладную. Кроме того, она делится соответственно группам ископаемых организмов на палеоботанику и палеозоологию (или более подробно - археоциатологию), палеоконхиологию (учение об ископаемых моллюсках), палеоэнтомологию (учение об ископаемых насекомых) и т. д. При этом выделилась специальная отрасль палеонтологической науки - палеоэкология, изучающая условия обитания ископаемых организмов.

Земная кора имеет весьма сложное строение. Она образована породами различного происхождения, различного минерального состава и различного геологического возраста в самых разнообразных соотношениях составляющих их химических элементов. Распространение же различных типов пород обычно подчиняется определенным закономерностям.

Основу земной коры составляют породы магматические, т. е. некогда образовавшиеся из расплавленных масс, застывших на глубинах близ земной поверхности или излившихся на нее. В последних случаях образовывались лавовые потоки и отлагались иногда большие массы пепла, превращавшегося в вулканические туфы. Выветривание пород на суше приводило к образованию огромных масс мелкозема - измельченного каменного материала, который под действием воды, ветра и силы тяжести перемещался и отлагался в виде слоев так называемых осадочных пород, к которым добавлялись в тех или иных количествах осадки самих водных бассейнов. В одних случаях это были известковые илы бактериального или химического происхождения, превращавшиеся со временем в твердые известняки. В других случаях, если воды бассейнов были сильно минерализованы или если испарение вод превышало их приток, выпадали различные соли кальция, магния, натрия, калия и других металлов, иногда с образованием соляных залежей. В определенных условиях при смешивании вод, стекавших с континентов, с водами древних морей создавались местные скопления глин (монтмориллониты, бентониты), фосфороносных и алюминиеносных минералов (фосфориты и бокситы), к которым в том или ином количестве подмешивался обломочный материал, приносимый реками с суши.

Мощная водная оболочка, покрывающая более двух третей поверхности Земли, является местообитанием огромного количества разнообразных живых организмов, которые тоже участвуют в процессе образования донных осадков и осадочных пород. Они обладают способностью накапливать минеральные вещества, играющие роль опоры для их мягких тканей. Многие организмы в процессе жизнедеятельности непрерывно выделяют твердые минеральные массы, в частности углекислый кальций, фосфорнокислый кальций, кремнезем и другие вещества.

В наше время созидающая геологическая деятельность свойственна бесконечному множеству морских животных и большим группам водорослей, живущих как в верхних слоях воды, так и на глубинах. Организмы в истории Земли издавна были активными геологическими агентами и выполняли огромную работу по формированию осадочных пород.

Создававшиеся в водных бассейнах геологического прошлого разнообразные минеральные, минерально-органические и органические осадки уплотнялись и преобразовывались в различные типы осадочных пород. В сложной геологической жизни земной коры с ее магматическими и вулканическими явлениями, с опусканиями и поднятиями, с образованием впадин и выступов и формированием складчатых горных сооружений, первичные "нормальные" горные породы претерпевают те или иные вторичные изменения. Подвергаясь давлению, они превращались в слоистые сланцеватые породы. При воздействии на исходное вещество пород, поднимавшихся из глубин нагретых минерализованных вод и паров, преобразовывался их минеральный состав, создавались новые минералы. Такие породы называют метаморфическими - измененными. Чем глубже залегали породы в земной коре, тем сильнее они изменялись под воздействием поднимавшихся из земных недр эманации, тем больше они отличались от первичных нормальных пород.

Исследователи природы давно заметили, что один слой осадочной породы лежит на другом. Это привело к появлению понятия более "молодой" и более "древней" породы. Постепенно накапливались описания выходов пород на дневную поверхность (по берегам рек, на склонах гор или в искусственных выработках - каналах, ямах, колодцах, каменных, песчаных или глинистых карьерах. Были выделены серии слоев - свиты, образование которых связывалось с более или менее длительными этапами прошлого геологического времени. Формирование каждого слоя, несомненно, было теснейшим образом связано со средой (вода или воздух суши), с окружающей частью земной поверхности (ландшафт), с климатическими особенностями. Каждая смена слоев обусловливалась изменениями этих или каких-либо других факторов. При этом могли проявляться и деятельность ветра и течений, та или иная роль живых организмов. Сама последовательность слоев, отличающихся друг от друга, отражала историю водного бассейна или впадины на поверхности континента за соответствующий отрезок геологического времени.

Наблюдение свит помогало ученым представить себе этапы геологического прошлого, но не давало понятия общей меры времени в каких-либо единицах. Впервые вопрос о времени образования осадочных пород был решен, когда геологи стали использовать для этого остатки животных и растений или их отпечатки, находимые на поверхности наслоения древних осадков, а также следы жизнедеятельности организмов. Постепенно опыт изучения осадочных пород в разных районах мира и на разных этапах геологического времени привел геологов к представлению, что каждому пласту осадочной породы соответствует как свидетель определенный состав остатков живых организмов. Наблюдавшееся при этом различие состава "окаменелостей" в отдельных слоях, последовательно налегающих друг на друга, первоначально объяснялось "катастрофами" на Земле. Но со времени работ Ж. Б. Ламарка (1744-1829) и Ч. Дарвина (1809-1882) это стало бесспорным доказательством эволюции животных и растений на нашей планете.

Палеонтологическая наука, выросшая на основе изучения органических остатков в горных породах и специальных исследований геологических разрезов, раскрыла грандиозную картину непрерывной смены в ходе эволюции жизни на Земле.

Уже на ранних этапах развития палеонтологии в отдельных слоях были обнаружены скопления остатков каких-либо определенных видов организмов, групп видов, родов, которые, несомненно, были особенно приспособлены к существовавшей тогда обстановке. Поскольку в соседних слоях наблюдались остатки уже других организмов, то отсюда возникло представление о "руководящих" формах - об организмах, указывающих на определенное время образования данного слоя и, таким образом, служащих "вехами" геологического времени, своего рода "часами".

Палеонтологические "часы" верно служат всему геологическому циклу наук. Они дали возможность построить схему истории геологического развития земной коры с делением ее на отдельные этапы. При этом геологические единицы времени непосредственно связывались с соответствующими геологическими образованиями. Так возникло представление об эрах, периодах, эпохах и геологических "веках", а также о группах, геологических системах, их отделах, ярусах и горизонтах.


Смятые в крупные и мелкие складки слои доломитов и известняков докембрия (Китай). Фото автора

Геологический возраст пород иного, не осадочного происхождения - магматических и метаморфических, лишенных органических остатков, тоже можно точно определить именно по соотношению с осадочными породами, содержащими органические остатки. Так, если какое-либо гранитное тело или жила изверженной породы "прорывает" осадочную серию определенного геологического возраста, то, следовательно, расплавленная магма внедрилась сюда после формирования этой серии. Если на поверхности гранитного тела или выше верхней части жилы изверженной породы залегает свита осадочных пород - значит это гранитное тело или жила является более древней, чем осадочные породы.

Совершенно аналогично палеонтологические материалы помогают определить геологический возраст движений земной коры. Земная кора никогда и нигде не находится в состоянии абсолютного покоя - отдельные ее части движутся в различных направлениях. Временами, когда эти движения приводили к погружению части поверхности земной коры под уровень моря или, наоборот, к появлению целых участков дна на поверхности, характер геологических процессов коренным образом менялся. Образованные в глубинах моря породы начинали в условиях суши или мелководья выветриваться и размываться, а на погруженных участках формировались новые осадочные слои, в которых появлялись соответствующие комплексы организмов. Таким образом, возраст некоторых фаз движений земной коры и районы их проявления могут быть также определены палеонтологическими методами. Поэтому тектоника - учение о движениях земной коры стала наукой исторической только с помощью палеонтологии.

Палеонтология довольно хорошо раскрывает историю жизни на Земле за последние 570 млн. лет. История живых существ записана, как говорят, на камне. Она выражена остатками твердых частей тела древних организмов, следами их ползания, проявлениями жизнедеятельности (сверление раковин, отложение минерального или органического вещества). Но по отпечаткам, а еще лучше по раковинам и костям можно воссоздавать и сами организмы. Интересно, что вещества, из которых формировались и формируются твердые части тела организмов,- это соли кальция, углекислая соль у большинства беспозвоночных животных и фосфорная у животных позвоночных. Причина этого несомненно лежит в энергетических особенностях перевода солей кальция из растворенного состояния в нерастворимое, что осуществляется с выделением свободной энергии. С этим обстоятельством необходимо связывать неизбежное для организмов освоение солей кальция, преобразующихся при этом в раковину у моллюска или в скелет у позвоночного животного.

В процессе бесчисленных смен поколений организмов, который выразился в видимом проявлении эволюции бесчисленных линий развития с их временными и местными этапами формообразования новые виды, образуясь в условиях изменения среды, были то удачными, то неудачными, приобретали одни признаки, утрачивали другие. Вследствие этого, как оказывается, в каждом геологическом периоде, в каждом этапе геологического времени наибольшую жизнедеятельность проявляли разные группы организмов. Наряду с проявлением и развитием форм более сложных, приспособившихся к существованию в определенных условиях, всегда существовали и более примитивные формы, эволюция которых, по-видимому, замедлялась вследствие относительной устойчивости условий их существования в древних средах, или же такие условия изменялись очень медленно в ходе геологического времени. Например, обстановка для бактерий в недрах Земли, куда они проникают на глубины в несколько километров, остается длительно относительно неизменной, часто вполне обеспечивающей осуществление ими обмена веществ со средой.

Исследования остатков организмов имеют двойную цель. Во-первых, они помогают различать осадочные отложения различного геологического возраста, т. е. принадлежащие к различным стратиграфическим подразделениям их, образованным в ходе геологического развития земной коры в водных бассейнах или на суше. Во-вторых, остатки организмов, находимые в ископаемом состоянии, показывают ход и характер их эволюционного развития. Они указывают на эволюцию жизни, в разные моменты оставлявшую свой след во вмещающих породах, показывают общий ход эволюции за длительные этапы и поясняют происхождение современного мира животных и растений на Земле.

Чем древнее осадочные породы, тем менее они оказываются похожими на первичные рыхлые осадки древних морских бассейнов или пресноводных бассейнов суши. Известно, что некоторые организмы вообще не могли оставлять следы своей жизнедеятельности в осадочных горных породах. Остатки других иногда изменялись уже в момент их захоронения настолько сильно, что оказывались для палеонтолога весьма трудно распознаваемыми. Все же в прежде известковых илах, известковоглинистых и иных осадках, ставших метаморфизованными породами - кристаллическими известняками и мраморами, кремнистыми сланцами и кварцитами (сливными песчаниками),- иногда сохраняются древние ископаемые остатки. Бережное отношение к этому материалу, внимательное его изучение в специально приготовленных препаратах (прозрачных шлифах и в пришлифовках) позволяет различать эти следы древней жизни.

Одним из важнейших факторов, способствующих сохранению органических остатков в ископаемом состоянии в древних породах, является содержавшееся в них первоначально остаточное органическое вещество. Пока оно не удалено из породы геологическими процессами, органические остатки и структуры не могут быть совершенно уничтожены. Их видно на выветреной поверхности породы и в прозрачных шлифах. Они придают породе часто более или менее темную окраску. При этом применение биологического микроскопа с увеличениями до 2000 раз часто позволяет выявлять очень интересные явления. Оказывается, что остаточное органическое вещество как бесструктурное, рассеянное в породе, так и в остатках организмов при наблюдении его в прозрачных шлифах под микроскопом выражено скоплениями черного, непрозрачного углистого вещества в виде сплетений тонких нитей, имеющих форму бактерий. Создается впечатление, что все органическое вещество при переходе его в ископаемое состояние перед завершением процесса окаменения осадка (литификация, диагенез) становилось объектом освоения бактериями и в виде отмерших клеток попадало затем в твердую породу. Это свойство установлено в массе образцов древних и поздних осадочных пород, включая и древнейшие, так называемые докембрийские, т. е. древнее 570 млн. лет.

Совершенно то же явление, но в несколько иных формах и других размерах микроскопических телец наблюдается в захороненном в осадочных породах железе. Всюду, в самых разнообразных осадочных породах железо представлено сгустками окислов в виде тонких округлого сечения палочек или нитей, напоминающих строение современных железобактерий.

Возможно ли сохранение в ископаемом состоянии остатков бактерий? Сущность явления их сохранности несомненно вполне объяснима. Иногда сгустки органического вещества отмерших клеток проходили стадию минерализации. Чаще они пропитывались известью. Некоторые виды бактерий, способные к использованию закисного железа, создавали чехлики из его гидроокислов, хорошо сохраняющиеся в осадке в породе. Б. Л. Исаченко считает, что отложение углекислого кальция в морских осадках происходит под влиянием бактерий. Установлено также, что некоторые культуры бактерий способны выделять из морской воды также фосфорнокислую известь, фосфорно-аммонийно-магнезиальные соли. В то же время изучение древних осадочных пород морского происхождения с применением биологического и электронного микроскопов позволяет видеть и остаточные клеточные структуры бактериального характера. Поэтому или минерализация остатков, или их отпечатки в структуре цементирующего минерального материала, иногда являвшегося минеральным коллоидом (например, кремниевым гелем), и другие условия захоронения бактериальных клеток несомненно имели широкое распространение в средах геологического прошлого. При этом часто остатки бактерий получали в породах и минералах прочную упаковку.

Большое значение имеют палеонтологические методы для изучения изменений в геологическом прошлом Земли, ее климата и земной поверхности, т. е. для палеогеографии. Материалы палеофитогеографии (истории расселения растений) и палеозоогеографии (истории распространения животных) поэтому являются основой палеогеографического исследования отдельных районов нашей планеты или ее поверхности в целом.

Данные палеонтологии, как мы говорили выше, помогают ученым представить себе последовательность отдельных этапов геологического прошлого Земли. Однако они не могут помочь нам определить абсолютную продолжительность этих этапов, точный возраст тех или иных пород. Поэтому уже давно исследователи искали способ, который дал бы возможность устанавливать геологический возраст отложений в абсолютных единицах. В частности, для этой цели пытались использовать изучение скорости накопления на дне бассейнов различного типа осадков. Этот метод, если его применять к отложениям, образовавшимся из материала, принесенного с суши в моря, дает интересные результаты, например, помогает подсчитать длительность времени отложений, образовавшихся из материала, принесенного с областей бывшего оледенения в морские и внутриконтинентальные водные бассейны.

Принципиально новые способы определения абсолютного возраста горных пород и минералов были получены геологической наукой в результате изучения радиоактивных элементов. Суть этих способов такова.

Ядра атомов всех химических элементов состоят из мельчайших частиц - положительно заряженных протонов и не несущих заряда нейтронов. Масса протона почти равна единице - массе атома водорода (ядро которого и состоит из одного протона). Нейтрон же имеет массу чуть большую, чем протон. Как оказалось, так называемый атомный номер элемента, установленный Д. И. Менделеевым в периодической системе элементов, соответствует числу протонов, или положительному заряду ядра. Нейтроны же присутствуют в составе ядра независимо от атомного номера. Число их в ядре варьирует у различных химических элементов - от атома водорода, не имеющего нейтронов, до атомов плутония и америция, содержащих по 149 нейтронов. Химические элементы, ядра атомов которых имеют одно и то же число протонов и, следовательно, один и тот же положительный заряд, но различное число нейтронов, называются изотопами. В периодической системе элементов они занимают одно и то же место, но вследствие различий в числе нейтронов имеют различные свойства.

Ядра бывают прочными (стабильными), не проявляющими никаких изменений во времени, или нестабильными, неустойчивыми, распадающимися с измеримой. скоростью. Радиоактивность - это и есть распад ядер, который сопровождается различным типом излучения.

Так называемое альфа-излучение представляет собой поток положительно заряженных ядер гелия со значительной кинетической энергией; бета-излучение - это поток отрицательно заряженных электронов; гамма-излучение - аналогично по свойствам лучам Рентгена.

Вое встречающиеся в природе химические элементы, имеющие атомный номер более 80, являются радиоактивными. Они образуют четыре радиоактивных ряда. Иногда эти ряды называются "семействами". Распад атомов исходных элементов - урана-233, урана-235, урана-238 и тория-232 (U233, U235, U238, Th232) - приводит к образованию неустойчивых ядер различной продолжительности существования, в свою очередь распадающихся. Сам процесс распада не зависит ни от каких внешних условий. Он идет с неизменной скоростью различной у различных элементов. Половина всех имевшихся в наличии ядер данного элемента распадается за строго определенный промежуток времени - так называемый период полураспада. Каждый радиоактивный ряд заканчивается образованием одного из трех изотопов свинца с выделением гелия. Эти процессы, и оказались теми "часами" истории Земли, которые позволяют исчислять возраст геологических образований в виде так называемой абсолютной геохронологии.

Что же такое абсолютная геохронология и что она дает к настоящему времени?

Интерес геологов к природным процессам распада радиоактивных элементов связан с тем, что скорость этих процессов, во-первых, постоянна, во-вторых, очень мала. Лабораторные испытания, в которых радиоактивные вещества подвергались воздействию температур от -270 до +7000°С, давлений свыше 200 атм, сильных магнитных полей, бомбардировки космическими лучами не могли изменить нормального хода распада радиоактивных элементов.

Периоды полураспада основных естественных радиоактивных изотопов следующие.


На ранних этапах по определению абсолютного возраста геологических пород наибольшее применение получил метод, основанный на определении количеств свинца и гелия как продуктов распада урана-238, урана-235 и тория-232. Оказалось, что радиоактивные химические элементы, входящие в состав минералов земной коры, способны давать указание на время их образования и поэтому могут служить для установления времени геологических событий, иногда весьма древних. Поскольку урано- и ториеносные минералы встречаются в природе реже, чем калиеносные, то преимущество калиевого метода оказывается очевидным особенно для осадочных пород.

В применении к изучению абсолютного возраста минералов осадочного происхождения наиболее интересным показал себя стронциевый метод, основанный на распаде рубидия-87 с образованием стронция. Для этого необходимо, чтобы испытуемый материал содержал рубидий, например, в виде хлористой соли или в виде калийсодержащих глинистых минералов группы иллита, или в виде глауконита, а из магматических минералов - микроклина, флогопита, мусковита и др.

Особое место в абсолютной геохронологии занимает углеродный метод, основанный на измерении содержания углерода-14, период полураспада которого составляет 5568 лет. Этот метод применим для сравнительно самых молодых геологических образований - четвертичных. Исходным материалом для него являются углеродсодержащие горные породы, лигниты, торф и т. д.

Углерод в природе представлен двумя стабильными изотопами С12 и С13, соотношение количеств которых в некоторых известняках составляет 98,892 и 1,108%. При этом интересно, что С12 является биогенным изотопом углерода, поскольку его содержание в организмах и в органогенных геологических образованиях всегда относительно выше по отношению к С13. Принято различать углерод небиогенного происхождения (С12/С13 =88,0-90,2) и биогенного (С12/С13=90-92,9).

Методы определения абсолютного возраста прошли довольно длительную проверку. Выяснено, что причиной ошибок при вычислении могут быть утечка изучаемого элемента при выветривании породы, утечка гелия, образовавшегося при распаде, примеси нерадиогенного свинца и т. д. Поэтому различные определения одного и того же объекта способны давать более или менее значительные отклонения. Но все же эти отклонения не столь значительны, как можно было думать ранее, и цифры возрастов тех или иных минералов и горных пород постепенно уточняются.

Одним из важнейших достижений современной науки является определение возраста Земли, точнее возраста слоев земной коры.

Так, возраст ряда весьма древних геологических образований составлял для гранитов Беломорья 1800 млн. лет, габброноритов Беломорья 2060 млн. лет, гранитов Балтийского щита 2030 млн. лет, пегматитов Карелии 2450 млн. лет. Аналогичные цифры получены для древних пород Канады, Бразилии, Индии, Южной и Центральной Африки и т. д. Возраст этих пород составляет от 2500 до 3350 млн. лет. Последняя цифра некоторыми исследователями принималась за возраст земной коры, другие принимали цифру 3,6 млрд, лет, полагая, что формирование каменной оболочки - коры нашей планеты началось 4,5 млрд. лет назад и длилось многие сотни миллионов лет в условиях уже относительно медленного накопления дополнительного космического вещества. Итак, наилучший способ проследить процессы и события истории земной коры - это сочетание палеонтологического и геохронологического методов. На основе этих данных выделены определенные этапы геологического развития земной коры и была принята геохронологическая шкала по данным определения абсолютного возраста (по Д. И. Щербакову, 1961 г.). Эта схема сильно раздвинула возрастные границы эр и периодов, в особенности в отношении более ранней части истории земной коры. Докембрий на территории СССР был разбит на четыре крупных подразделения, имеющих огромную длительность. Весьма велика и мощность образований, соответствующих этим подразделениям. Все четыре подразделения докембрия можно рассматривать как эры.


Обращают на себя внимание различия в длительности выделенных в схеме периодов. Чем ближе к нашему времени, тем они становились как бы короче и короче. Это объясняется тем, что основой для схемы были полученные геохимиками от геологов и палеонтологов палеонтологические данные. Эти данные отражали эволюцию органического мира Земли в ходе геологического времени, которая осуществлялась как бы убыстряющимися темпами. От слоя к слою, от одного геологического века к следующему изменения в составе организмов происходили все быстрее, что позволяло выделять менее мощные серии отложений, образовавшиеся за сравнительно короткие промежутки времени.

Заменяет ли метод абсолютной геохронологии другие методы определения геологического возраста, в частности палеонтологический? Совсем наоборот! Именно сочетание палеонтологического метода, раскрывающего вместе с геологическими данными последовательность формирования осадочных отложений целыми свитами и сериями свит, с методом геохронологии способствует наилучшему раскрытию истории развития нашей планеты.

<<< Назад
Вперед >>>

Генерация: 5.303. Запросов К БД/Cache: 3 / 0
Вверх Вниз