Книга: Империя звезд, или Белые карлики и черные дыры

Глава 12 Челюсти тьмы

<<< Назад
Вперед >>>

Глава 12

Челюсти тьмы

Компьютерное моделирование Стирлинга Колгейта и Ричарда Уайта было первым шагом, убедившим ученых в возможности полного коллапса звезд. Тем временем математики получили результаты, позволявшие разобраться с проблемой кажущегося противоречия в задаче о двух наблюдателях, описанной Оппенгеймером и Снайдером еще в 1939 году. В их статье речь шла о коллапсирующей звезде, стремящейся достигнуть радиуса Шварцшильда. Наблюдатель, находящийся рядом со звездой, видит, что она почти со скоростью света сжимается, причем все быстрее по мере приближения к радиусу Шварцшильда[76]. Но для удаленного наблюдателя коллапсирующая звезда кажется застывшей. На самом деле это иллюзия: когда звезда исчезает за горизонтом событий, ее гравитация возрастает настолько, что свет не может из нее вырваться. Для решения этого парадокса потребовалось составить уравнения, которые позволили сравнить визуальную информацию, получаемую обоими наблюдателями, а именно — что происходит с материей, захваченной в область пространства и времени с огромной гравитацией. Оказалось, что Эддингтон решил эту задачу еще в 1924 году, исследуя решения уравнений Шварцшильда с точки зрения общей теории относительности Эйнштейна, хоть и не применил их к коллапсирующим звездам.

Но как поверить в то, что звезда во много раз большая чем Солнце сжимается в бесконечно малую точку? Физики были готовы к любому сценарию, пусть даже странному, нелогичному, противоречивому и абсолютно невозможному, но доказанному математически. Астрофизики же мыслили совсем иными категориями.

В 1965 году, за год до того, как Колгейт и Уайт завершили свое компьютерное моделирование, у 34-летнего английского математика Роджера Пенроуза из лондонского Биркбек-колледжа возникла блестящая идея — применить топологию в исследовании эволюции звезд. Топология — это раздел математики, в котором изучают свойства предметов и их поверхностей, не меняющихся при деформации. Стандартным примером являются кофейная чашка и бублик. Они имеют разную форму, но одинаковую топологию: у каждого предмета есть отверстие, у бублика в центре, а у чашки — в ручке. Поэтому они могут трансформироваться друг в друга без разрывов. Пенроуз, используя топологию для изучения поверхности горизонта событий, нашел неопровержимое доказательство того, что, как только звезда исчезает за горизонтом событий, она неизбежно коллапсирует, пока не превратится в сингулярность[77]. Таким образом, он теоретически подтвердил существование черных дыр.

Дальше возникал вопрос: а можно ли увидеть эту бесконечно малую и бесконечно плотную звезду? Итак, коллапс звезд завершается сингулярностью. Но в сингулярностях законы физики нарушаются, то есть эволюция Вселенной становится непредсказуемой, что очень тревожит ученых. В 1969 году Пенроуз выдвинул «гипотезу космической цензуры» — он заявил, что не может быть голых сингулярностей. По определению, сингулярности и то, как в этих точках нарушаются законы физики, невозможно увидеть за горизонтом событий — оттуда ничто не способно выйти наружу. Скорее всего, для описания происходящего внутри черной дыры потребуется новая физика — квантовая теория гравитации. А пока по поводу сингулярностей беспокоиться не нужно.

Блестящая топологическая идея Пенроуза была, однако, не чисто математической абстракцией. Его вдохновило необычайное открытие, сделанное 34-летним голландским астрономом из Калифорнийского технологического института Маартеном Шмидтом, — за два года до работ Пенроуза он опубликовал свою поистине пионерскую статью. Шмидт исследовал спектральные линии в спектрах звезд, а практически все, что мы знаем о звездах, — от их химического состава до траекторий их движения — получено именно на основе анализа этих спектров. Ярким примером является эффект Допплера, который позволяет определить скорость звезды относительно Земли. Этот эффект, открытый австрийским ученым Кристианом Допплером, состоит в изменении частоты колебаний или длины волн, воспринимаемых наблюдателем, вследствие движения источника волн и наблюдателя относительно друг друга. К примеру, если «скорая помощь» удаляется от нас, то частота звука сирены уменьшается, а если машина приближается — то частота звука увеличивается. В 1842 году Допплер, исходя из волновой теории света, теоретически показал, что свет будет вести себя точно так же, как звуковые волны, — то есть цвет светящегося тела, например звезды, будет меняться в зависимости от скорости ее удаления от неподвижного наблюдателя.

Двадцать лет спустя астрономы подтвердили его предсказание. Чтобы измерить допплеровский сдвиг, ученые сравнивают длину волны спектральной линии определенного элемента в лаборатории с той же самой линией в спектре звезды. Таким образом определяется скорость движения звезды относительно Земли. У звезд, двигающихся к Земле, например, при вращении друг относительно друга в двойной системе, спектральные линии смещены в сторону коротких волн, в фиолетовую часть спектра. Это известно как фиолетовое смещение. У звезд, удаляющихся от Земли, спектральные линии смещены в длинноволновую область, в красную часть спектра. Это — оптическое красное смещение. Оно отличается от гравитационного красного смещения, которое является следствием влияния гравитации на свет.

В 1929 году 40-летний американский астроном Эдвин Пауэлл Хаббл, изучая оптическое красное смещение звезд, сделал важное открытие, которое во многом повлияло на наше понимание процессов, происходящих во Вселенной. Почти десять лет Хаббл наблюдал галактики в Маунт-Вилсоновской обсерватории близ Пасадины в штате Калифорния. Делал он это с помощью телескопа Хукера, тогда самого большого и лучшего телескопа в мире. В результате кропотливых измерений Хаббл обнаружил, что красное смещение галактик — другими словами, скорость, с которой галактики удаляются от нас, — зависит от их расстояния до Земли. Чем дальше галактика, тем быстрее она движется, причем ее скорость является произведением расстояния от галактики до Земли на постоянную Хаббла (закон Хаббла). Величина этой постоянной равна 70 километрам в секунду на 30,8 миллиона триллионов километров (мегапарсек). Другими словами, при увеличении расстояния от Земли до галактики на 30,8 миллиона триллионов километров скорость их удаления от нас увеличивается на 70 километров в секунду.

Открытие Хаббла стало первым доказательством расширения Вселенной. Оно легло в основу теории Большого взрыва, которую астрофизики предложили в конце 1960-х годов. Согласно этой теории, около 13 миллиардов лет назад произошел взрыв крошечного, сверхплотного, сверхгорячего сгустка материи, и с тех пор он расширяется как воздушный шар. При расширении Вселенной разные галактики, подобно пятнам на поверхности шарика, отдаляются друг от друга. Другими словами, красное смещение связано не с относительным движением галактик и Земли, а с расширением самой Вселенной. Ученые назвали его «космологическим красным смещением»[78]. Коротковолновое излучение — гамма-лучи, рентгеновские лучи, ультрафиолетовое излучение и часть инфракрасного излучения — поглощаются атмосферой, так что астрономы стараются наблюдать их с помощью телескопов на орбитальных спутниках.

Радиоволны относятся к низкочастотной, длинноволновой области спектра. Они свободно проходят через атмосферу, поэтому астрономы могут изучать их с поверхности Земли. Радиоастрономия появилась почти случайно, в 1932 году, когда Карл Янски из «Bell Telephone Laboratory» пытался определить природу шумов при переговорах по трансатлантическому кабелю. Оказалось, что их вызывали радиоволны, идущие из центральной части Млечного Пути, причем они оказались гораздо сильнее тех, что шли от Солнца. Первоначально радиоастрономы использовали вогнутую тарелку, которая фокусировала радиоволны в антенну-приемник. Но после изобретения радаров, сыгравших большую роль во Второй мировой войне, радиоастрономы вооружились значительно более совершенной аппаратурой. Благодаря радиоастрономии было сделано одно из самых революционных открытий в астрофизике. Заряженные частицы при ускорении испускают излучение. Электроны, вращаясь с высокой скоростью в магнитном поле галактик, излучают длинные электромагнитные волны, то есть радиоволны. Таким образом, каждая галактика излучает радиоволны. Однако некоторые галактики являются более мощными источниками излучений, чем другие, причем они излучают радио-и световые волны одинаковой интенсивности. Это весьма необычное явление, поскольку большинство галактик в основном испускают свет. Радиоволны, приходящие из некоторых далеких галактик, в миллиарды раз интенсивнее радиоволн, идущих к нам из Млечного Пути. В конце 1940-х годов астрономы обнаружили три гораздо более мощных источника радиоволн, чем все известные ранее. Это излучение приходит из определенных созвездий. Сами источники казались полной загадкой, и никто не имел ни малейшего представления, что же это такое[79].

Вальтер Бааде (бывший сотрудник Цвикки) и 56-летний астрофизик Рудольф Минковский решили попробовать найти оптические аналоги этих таинственных источников[80]. В 1954 году, используя крупнейший в мире оптический телескоп в Паломарской обсерватории, они обнаружили объект, который никак не мог быть звездой. Он находился примерно в центре одного из мощных источников радиоволн из созвездия Лебедя, за пределами нашей галактики. Они назвали его Лебедь А. Его красное смещение указывало на то, что он удаляется от нас со скоростью 16000 километров в секунду — примерно 5 процентов от скорости света. Согласно закону Хаббла, источник оказался поразительно далеким — его разделяет с нами 7300 миллионов триллионов километров. Сириус, самая яркая звезда, которую можно увидеть невооруженным глазом в ночном небе, находится на расстоянии 83 триллиона километров, а Солнце — на расстоянии лишь 150 миллионов километров. Лебедь А — самый мощный источник радиоволн в небе Северного полушария.

Изучая фотопластинки, Бааде и Минковский предположили, что источником этого шквала радиоволн могут быть две сталкивающиеся галактики. Но чтобы поддержать выход радиоизлучения такой мощности, галактики должны сталкиваться постоянно, что делало идею Бааде и Минковского сомнительной[81]. Примерно в то же время английские астрономы с помощью радиотелескопов в Джодрелл-Бэнк заметили, что это радиоизлучение приходит из двух удаленных друг от друга «лепестков», — оказалось, Лебедь А состоит из компактного ядра с очень высокой мощностью излучения и двух мощных источников радиоизлучения с обеих сторон этого ядра.

К 1963 году астрономы исследовали два других странных объекта. Они числились в каталоге как 3С 48 и 3С 273[82]. С помощью оптических телескопов астрономы обнаружили у этих объектов оптические двойники — как и у Лебедя А. Но они оказались еще более загадочными — некоторые линии в их спектрах выглядели очень странно. Они явно не могли принадлежать ни одному из знакомых ученым элементов.

Неужели во Вселенной существуют какие-то новые, неизвестные еще элементы? Маартен Шмидт и астроном из Калтеха Джесси Гринстейн, бывший коллега Чандры по Йерксу, часто обсуждали эту возможность с Вилли Фаулером, экспертом Калтеха по химии звезд. Обсуждение обычно проходило за чашкой кофе, правда, Фаулер предпочитал мартини. Он был убежден, что все эти разговоры о новом элементе — полная чушь. И он оказался прав — вскоре Шмидт понял, что таинственные спектральные линии 3С 273 — линии, испускаемые атомами водорода, но с невероятно большим красным смещением, на целых 16 процентов. Из этого следует, что 3С 273 удален от нас на 19,2 миллиарда триллионов километров, он даже дальше, чем Лебедь А, причем продолжает свое движение, можно сказать, мчится, со скоростью 40 тысяч километров в секунду (около 13 процентов от скорости света). Он выдвинул эту теорию как «достаточно очевидную и не вызывающую особых возражений».

В течение нескольких дней Гринстейн и Томас А. Мэтьюз из Калтеха определили, что спектральные линии 3С 48 сдвинуты в красную область спектра на 37 процентов. Это означает, что 3С 48 удаляется от нас со скоростью 74400 километров в секунду (примерно 25 процентов от скорости света) и по закону Хаббла находится на расстоянии 38 миллиардов триллионов километров. Другими словами, свет от этих звезд добирался до нас миллиард лет. Глядя на них, мы видим Вселенную такой, какой она была миллиард лет назад.

Объекты 3С 48 и 3С 273 находятся очень далеко, но все же могут быть сфотографированы, а значит, интенсивность их свечения огромна. И действительно, 3С 273 оказался в 25 триллионов раз ярче Солнца и в тысячу раз ярче, чем вся его галактика, которую он полностью затмевает. Этот звездоподобный объект находится в самом центре быстро движущихся галактик. 3С 273 в сто раз ярче, чем светящиеся галактики вокруг таких радиоисточников, как Лебедь А. Шмидт увидел и струи, простирающиеся от 3С 273 к одному из его лепестков, заметив, что тесная связь между струями и этим объектом является весьма интригующей.

Если воспользоваться уравнением Эйнштейна E = mc2, то получится, что энергия этих необычайно ярких звездоподобных объектов соответствует массе миллиарда солнц, целой галактике звезд. Излучение такого объекта, как 3С 273, сильно отличается от излучения обычных звезд. Оно практически полностью состоит из гамма- и рентгеновского излучения очень высокой энергии, испускаемого веществом с температурой больше 100 тысяч градусов Кельвина.

Одна из возможных причин красного смещения — мощная гравитация. Гринстейн и Шмидт рассмотрели эту гипотезу и нашли ее маловероятной. Чтобы вызвать такое чрезвычайно большое красное смещение, объекты должны быть сверхплотными настолько, что с точки зрения современной физики совершенно невозможно. Гринстейн и Шмидт придумали название для этих звездных объектов — «квазизвездные объекты», или сокращенно «квазары». Но ученые все-таки не стали сбрасывать со счетов гипотезу гравитационного красного смещения — не исключено, что существуют условия, при которых оно возможно. Но вот откуда берется такая огромная энергия квазаров — по-прежнему было совершенно непонятно.

Бааде и Минковский предположили, что энергия создается при столкновении нескольких галактик. Но это потребовало бы фантастически высокой эффективности преобразования массы в энергию. А может быть, плотное скопление 100 миллионов звезд, каждая из которых в тридцать-пятьдесят раз тяжелее Солнца, внезапно взрывается, находясь на грани превращения в сверхновую? В 1967 году Стирлинг Колгейт смоделировал эти события и показал, что хоть такие небесные фейерверки и кажутся невероятными, но они довольно хорошо согласуются с экспериментальными данными. Это была гениальная идея, но теория получилась невероятно сложной[83].

Хойл и Фаулер тем временем работали над простой, но очень захватывающей моделью. Итак, радиоволны явно исходят из центра Галактики, но тогда очень вероятно, что квазар — это сверхмассивная звезда, образованная из плотного облака газа в центре Галактики. На определенном этапе давление излучения превышает силу тяжести, и звезда перестает захватывать газ. Фаулер и Хойл предположили, что такие сверхмассивные звезды должны быть в 100 миллионов раз массивней Солнца. После каждого периода горения звезда коллапсирует под действием собственной гравитации. И именно гравитационный коллапс сверхмассивных звезд и является источником чудовищной энергии квазаров. Эти две идеи — теория квазаров Шмидта и предположение Хойла и Фаулера, что источником энергии могут быть массивные звезды, сколлапсировавшие почти до размеров радиуса Шварцшильда, — вдохновили Пенроуза заняться математическим описанием коллапса звезды.

В один прекрасный день 1963 года, гуляя по территории кампуса Калифорнийского технологического института, Фаулер встретил своего коллегу, блестящего физика Ричарда Фейнмана. Фейнману было тогда 45 лет. (Спустя два года он был удостоен Нобелевской премии за решение задач квантовой электродинамики, с которыми не справились такие титаны теоретической физики, как Дирак, Гейзенберг и Паули.) Увидев Фаулера, Фейнман тут же заявил: «Вилли, дорогой, а знаете ли вы, что эти сверхмассивные объекты, над которыми вы и Фред сейчас работаете, неустойчивы: они будут коллапсировать согласно общей теории относительности?» Хойл и Фаулер в своей модели использовали теорию гравитации Ньютона, но общая теория относительности предсказывает гораздо большее гравитационное притяжение молекул газа, чем теория Ньютона. Это означало, что излучающие энергию сверхмассивные звезды должны непрерывно сжиматься. Фаулер тут же побежал к себе в кабинет и, как он потом рассказывал, «введя параметры общей теории относительности в свои расчеты, убедился, что Дик прав и эти проклятые звезды действительно должны коллапсировать». Он попытался спасти свою теорию, варьируя количество сжигаемого ядерного топлива и учитывая вращение звезды, но все было бесполезно.

А между тем в 1960 году Чандра решил снова вернуться к теории относительности — области физики, которой он долго избегал. К этому времени он закончил заниматься гидродинамической и гидромагнитной стабильностью (в 1961 году вышла его монография «Гидродинамическая и гидромагнитная стабильность»). Эта работа не принесла Чандре большого удовлетворения. Расчеты были долгими и трудными, и у него возникло чувство, что он впустую потратил десять лет, работая над не очень существенными проблемами. И тогда он решил обратиться к «более глубоким вопросам». Для него это было в некоторой степени и вопросом самоутверждения. Чандра хотел заняться тем, к чему стремился в течение многих лет, — теоретической физикой. Сможет ли он создать что-нибудь значительное? Он поделился своими сомнениями с коллегой по кафедре физики и другом Грегором Вентцелем, и тот его ободрил. «В любом случае, — сказал он, — вас ведь не уволят».

В 1962 году Чандра принял участие в III Международной конференции по гравитации и теории относительности в Варшаве. Там он увлеченно обсуждал проблемы астрофизики с Я. Б. Зельдовичем, с которым последний раз встречался во время поездки в Россию, двадцать восемь лет назад. Чандра вернулся из Варшавы вдохновленный. Теперь он понимал, чем стоит заняться.

Именно тогда Вилли Фаулер попал в затруднительное положение в связи с проблемой стабильности сверхмассивных звезд. Когда физик ранга Фейнмана пытается решить проблемы, находящиеся на переднем крае науки, это распространяется мгновенно. Чандра был знаком с компьютерными расчетами Фаулера, в которых звезды в 100 миллионов раз массивнее Солнца сжигают свое ядерное топливо и затем коллапсируют. Он также слышал об интуитивном отклике Фейнмана на эту работу и об отчаянных попытках Фаулера спасти свою теорию. Чандру эта тема задела за живое, он словно вернулся к событиям тридцатилетней давности, в Кембридж. Это напоминало задачу, которую Эддингтон поставил в 1916 году: каким образом остаются стабильными звезды, у которых чередуются периоды расширения и сжатия.

Чандра тогда просто использовал аппарат общей теории относительности и заявил, что Эддингтон мог бы получить аналогичные результаты пару десятилетий назад.

В 1964 году Чандра опубликовал свои первые работы по общей теории относительности. Он доказал, что, если звезда в 100 миллионов раз массивнее Солнца начнет пульсировать, она станет нестабильной. Если же она уменьшится до предполагаемого размера квазара — 160 миллиардов километров в поперечнике, — то ей придется полностью сколлапсировать и прекратить свое существование. Поэтому предполагаемая сверхмассивная звезда Хойла и Фаулера не может быть источником энергии квазаров. Чандра был в восторге от своего результата. Он заявил: «Я совершенно убежден, что сингулярности — звезды бесконечно малого размера и бесконечно большой плотности — на самом деле существуют. Огромные звезды с массой больше верхней границы для белых карликов, сжимаются в ничто и исчезают в пространстве и времени».

В декабре все основные действующие лица в исследовании квазаров собрались на симпозиуме по релятивистской астрофизике в Техасском университете в Остине. Информации и идей было в избытке. Сессия следовала за сессией, на которых Фаулер и его сотрудники представляли теории, соответствующие быстро расширяющейся базе данных. Некоторые из их теорий помещали квазары на край Солнечной системы, другие — на край Вселенной. Один день был посвящен гравитационному красному смещению, следующий — космологическому. Доклады по быстрым струям нужно было слушать в Далласе, и участникам симпозиума приходилось летать самолетом из Далласа в Остин. Они называли это «развозом молока». Возвращаясь обратно в Даллас после окончания сессии, Ричард Уайт обнаружил, что оказался среди таких корифеев астрофизики, как Маргарет и Джеффри Бербидж, Чандра, Фаулер, Уилер и Шмидт. Когда пассажирам разрешили отстегнуть ремни безопасности, Фаулер встал, драматически прижал руки ко лбу, оглядел всех присутствующих и объявил громовым голосом: «Пока этот самолет не упал, мы можем смело продолжить обсуждение квазаров».

Природа квазаров, причина их невероятной яркости до сих пор остается тайной. В 1964 году Эдвин Солпитер в США и Я. Б. Зельдович с сотрудниками в Советском Союзе предложили сценарий эволюции звезд с массой более чем в миллион раз больше массы Солнца. Такие огромные космические образования, проходя сквозь облако межзвездного газа, захватывают его молекулы, а затем, пережив гравитационный коллапс, превращаются в невообразимо малые точки, невероятно плотные и тяжелые. Далее они сворачивают вокруг себя пространство и продолжают движение, захватывая все новые и новые частицы газа, словно космические пылесосы. Частицы вблизи края горизонта событий будут врезаться друг в друга с околосветовой скоростью, нагреваясь и испуская мощное рентгеновское излучение. Теория Солпитера и Зельдовича предлагала способ генерирования огромного излучения — гораздо более мощного, чем при протекании ядерной реакции. Столько излучает целая галактика.

Удивительным образом самые различные пути и методы исследований дали результаты, которые сложились в единую картину. В 1965 году Пенроуз элегантно доказал с помощью топологии, что падающая за горизонт событий звезда исчезает навсегда. В 1966 году Колгейт и Уайт использовали компьютерное моделирование для изучения механизма коллапсирования звезд, а в 1967 году Джон Уилер нашел прекрасный и впечатляющий термин для описания области пространства, в которую коллапсируют звезды, — «черная дыра». Радиоастрономия помогла обнаружить квазары, черпавшие энергию из черных дыр: черная дыра находится в центре квазара, и частицы, улетающие за горизонт событий, излучают мощную радиацию. Теперь уже никто не сомневался в существовании черных дыр. А темпы исследований возрастали с каждым годом.

В 1969 году английский астрофизик из Королевской Гринвичской обсерватории в Сассексе Дональд Линден-Белл использовал модель Солпитера и Зельдовича для изучения центра галактики. Он предположил, что массивная звезда, полностью сколлапсировавшая за горизонт событий, станет таким сильным источником гравитации, что втянет в себя все вокруг с образованием вращающегося диска. Это натолкнуло на мысль, что черные дыры тоже могут вращаться. Массивные звезды выбрасывают в пространство часть своей массы, становятся все меньше и вращаются все быстрее и быстрее. То есть черные дыры — это не просто место для умирающих звезд, но нечто, что имеет структуру, определенные физические свойства. В 1963 году 29-летний математик из Новой Зеландии Рой Керр предложил математическое описание вращающихся черных дыр. Защитив диссертацию в Кембридже, он работал в Техасском университете в Остине.

Керр применил общую теорию относительности к пространству и времени вокруг вращающегося сферического объекта, например звезды. Разработанная им методика измерения расстояния и времени в пространстве, искривленном этим объектом, называется метрикой Керра.

В повседневной жизни мы используем евклидову геометрию — ту, что изучали в школе. В ней пространство имеет три измерения[84]. В общей теории относительности используется метрика Керра, которая отражает структуру геометрии искривленного четырехмерного пространства-времени. Шварцшильд при решении уравнений общей теории относительности Эйнштейна использовал метрику, названную его именем, для описания свойств этого пространства-времени вокруг покоящегося (невращающегося) сферического объекта. В 1939 году Оппенгеймер и Снайдер пришли к выводу, что на самом деле это метрика для области вокруг покоящейся черной дыры. Таким образом, вращающиеся черные дыры называются черными дырами Керра, а невращающиеся — черными дырами Шварцшильда. Метрика Керра переходит в метрику Шварцшильда, если черная дыра не вращается.

Преимуществом решения Керра является то, что оно применимо ко всем возможным черным дырам. Оно просто, а потому красиво — в нем для описания каждой черной дыры требуется только два параметра, а именно ее масса и спин. Массу черной дыры (она равна массе звезды и захваченного ею вещества) несложно определить, когда черная дыра находится в двойной системе, а ее спин (количество оборотов в секунду) составляет тысячи оборотов, если дыра возникла в результате коллапса огромной звезды.

Но возможна ли такая простая классификация? Каждая вращающаяся и коллапсирующая звезда имеет разные характеристики поверхности. Однако после коллапса звезды за горизонт событий его поверхность всегда оказывается идеально гладкой — как речная поверхность после того, как камешек, брошенный вами, достигнет дна. Каждая физическая характеристика сколлапсировавшей звезды, вследствие мгновенной деформации пространства-времени, исчезает — за исключением ее массы и спина, — как улыбка Чеширского кота. Это поразительное открытие было сделано в 1960-х годах Я. Б. Зельдовичем и его группой. И снова Уилер нашел эффектный образ: «черные дыры не имеют волос». Независимо от того, как звезда прошла свой горизонт событий, она не оставляет никаких следов своей прежней индивидуальности.

Гипотеза космической цензуры Пенроуза вводит ограничения на массу черной дыры и скорость ее вращения. Если черная дыра вращается слишком быстро, то горизонт событий отдаляется от дыры, делая сколлапсировавшую звезду видимой, — но этого быть не может. Так что черные дыры, одни из самых массивных объектов во Вселенной, описываются элегантно и просто.

Осенью 1971 года Чандра взял творческий отпуск на три месяца, чтобы поработать в группе ученых, которую возглавлял ученик Уилера, профессор теоретической физики Калифорнийского технологического института Кип Торн. Торну был 31 год. Он уже несколько лет занимался черными дырами, и его группа была одной из ведущих в этой области астрофизики. Высокий, худощавый и жилистый, с длинными волосами и большой бородой, Торн излучал уверенность в своих силах. Он блестяще разбирался как в сложной математической теории черных дыр, так и в сугубо технических вопросах. Торн внушал своим ученикам, что «мы одна команда», и они обожали своего руководителя.

Торн тепло вспоминал Чандру. Всегда безукоризненно одетый, в строгом деловом костюме, Чандра с удовольствием ходил обедать вместе с Торном и его неряшливыми аспирантами в студенческую столовую «Жирная», предпочитая ее гораздо более престижному и знаменитому калтеховскому клубу «Атенеум», где бывал даже Эйнштейн. Чандра всегда приходил в свой офис ни свет ни заря, его двери всегда были открыты, и ученый был готов побеседовать с любым проходившим мимо астрономом.

Два аспиранта Торна, Уильям Пресс и Саул Тьюколски, однажды обратили внимание Чандры на работу Керра. Чандра был поражен ее математической красотой: «Самым большим впечатлением за все годы моей жизни в науке — а это более сорока пяти лет — было осознание того, что решение уравнений эйнштейновской общей теории относительности, полученное Керром, дает точное представление об огромном числе массивных черных дыр, разбросанных во Вселенной. Невероятное открытие, сделанное с помощью изящных математических операций, оказалось полностью соответствующим реальности, и это убеждает меня, что в красоте заключена высшая целесообразность природы, а человеческий разум способен откликаться на эту красоту, на ее самые глубинные и наиболее скрытые стороны».

Тьюколски продолжал поиски методов расчета взаимодействия вращающихся черных дыр с электромагнитными и гравитационными волнами. Гравитационные волны, возникающие при движении материальных объектов в пространстве, были предсказаны общей теорией относительности, но до сих пор в прямом эксперименте не наблюдались[85]. Разбираясь с проблемами Тьюколски, Чандра почувствовал возможность связи между структурой черных дыр, электромагнетизмом и гравитационными волнами. Тьюколски вспоминал, что Чандра настаивал на интенсификации поиска этой связи. Это побудило Чандру заняться одним из самых сложных вычислений за всю его научную карьеру. К тому времени отношение к черным дырам в научном сообществе полностью изменилось. Они уже не отвергались как уродливые, неуклюжие объекты, портящие гармонию Вселенной, а считались, как говорил Чандра, «самыми совершенными макроскопическими объектами».

5 августа 1971 года космический корабль «Аполлон-15» готовился стартовать с поверхности Луны. Астронавты уже прогуливались по Луне и выходили из космического корабля в открытый космос для проведения ремонтных работ. Во время полета они провели множество научных экспериментов. В тот день полковник Дэвид Скотт и его экипаж отслеживали источники рентгеновских лучей из космоса. Они определили быстрые нерегулярные вспышки рентгеновских лучей, идущих от звезды Лебедь X-1, удаленной от Земли на 32 тысячи триллионов километров и являющейся спутником голубого сверхгиганта HDE 226868 в созвездии Лебедя[86]. Их результаты дополнили наблюдения, сделанные в предыдущем году с американских спутников.

После испытания Советским Союзом сверхмощной «Царь-бомбы», проведенного в 1961 году, Соединенные Штаты запустили спутники для обнаружения рентгеновского излучения от советских водородных бомб. Эти спутники стали получать удивительные сигналы, например, они зафиксировали интенсивное рентгеновское излучение, вероятно, от источника, находящегося за пределами нашей галактики.

2 декабря 1970 года НАСА запустило SAS-1 (первый из трех малых астрономических спутников) со стартового комплекса Сан-Марко в Кении для наблюдения этих рентгеновских лучей. Спутник был назван «Ухуру», то есть «Свобода» на суахили. Спутник был нацелен на источник рентгеновских лучей Лебедь Х-1. «Ухуру» мог изучать этот источник всего лишь в течение двух минут, зато экипаж «Аполлона-15» — в течение целого часа.

Лебедь Х-1 привлек внимание ученых прежде всего чрезвычайной изменчивостью рентгеновского излучения. Некоторые вспышки продолжались по нескольку месяцев, другие составляли тысячные доли секунды. Быстрые перемены указывали на очень небольшие размеры источника. Оказалось, что рентгеновские лучи действительно выходили из компактного объекта размером не более 3 тысяч километров в поперечнике — менее четверти диаметра Земли.

Но как такой крошечный объект мог быть столь мощным источником излучения?

Методом сравнения с другими голубыми сверхгигантами астрофизики подсчитали, что HDE 226868 тяжелее Солнца почти в 30 раз. Так как Лебедь Х-1 был его звездой-компаньоном, то с учетом формы орбиты и массы HDE 226868 астрономы сделали вывод, что этот объект по крайней мере в 7 раз тяжелее Солнца. Но тогда Лебедь X-1 оказывался слишком большим, чтобы быть белым карликом (максимальная масса 1,4 массы Солнца) или нейтронной звездой (максимальная масса две-три массы Солнца). Как же астрофизики заволновались, поняв, что у объекта Лебедь X-1 есть практически все необходимые характеристики черной дыры! Сегодня большинство ученых согласно с тем, что Лебедь X-1 действительно является черной дырой, безжалостно пожирающей своего компаньона. «Пасть» черной дыры, то есть ее горизонт событий, составляет всего лишь 42 километра в диаметре. Где-то глубоко внутри нее находится коллапсирующая звезда. Вещество, которое черная дыра высасывает из своего компаньона, голубого сверхгиганта, образует «аккреционный диск» — широкий плоский диск вещества, он вращается вокруг дыры, как огромный компакт-диск CD-плеера. Рентгеновские лучи исходят не от черной дыры — излучение не может выйти оттуда, а от газа в аккреционном диске. Внутренние части диска вращаются быстрее, чем наружные, трутся о своих медленных соседей, нагреваются от трения и испускают рентгеновские лучи. Материя аккреционного диска постоянно засасывается в черную дыру, как вода в канализацию. Наблюдаемое рентгеновское излучение показывает, что оно исходит от аккреционного газового диска диаметром около 6,4 миллиона километров. Излучающая рентгеновские лучи горячая часть диска — примерно 480 километров в диаметре. Сегодня мы принимаем все это как должное. Но несколько десятилетий назад ученые даже представить себе не могли, что звезда способна исчезнуть, превратившись в черную дыру.

Чандра понимал, что ему будет нелегко сделать что-то значительное в физике черных дыр. В этой области науки работало множество ярких, талантливых и молодых ученых, а кроме того, он занялся черными дырами лишь в 1975 году, когда казалось, что самые интересные открытия тут уже сделаны, и оставалось только уточнять и систематизировать детали. Однако Чандре именно это и было больше всего по нраву. Вместо жонглирования числами он будет заниматься только математическими символами, как Дирак.

Чандра начал с прямого и простого вывода метрики Керра, и это ему прекрасно удалось, хотя, по мнению экспертов и самого Керра, его вывод был невозможен без чудовищно сложных вычислений. Затем следовало проанализировать, что может случиться с вращающейся черной дырой, когда она подвергается воздействию электромагнитных или гравитационных волн, и каким образом черная дыра влияет на движущиеся рядом с ней частицы. Ученые обычно продвигаются в своих исследованиях от частного к общему, но Чандра решил сразу взять быка за рога. Он считал, что именно так подходил Бете к решению физических проблем.

В 1980 году дальнейшее развитие модели Керра и новые данные о наблюдении квазаров наконец-то позволили астрофизикам прийти к единому описанию всех источников радиоволн, от слабых радиогалактик до квазаров. Это было потрясающее бракосочетание общей теории относительности с теоретической и наблюдательной астрофизикой. Итак, квазар получает энергию от сверхмассивной вращающейся черной дыры, сопровождаемой вращающимся аккреционным диском. (Черная дыра, дающая энергию квазару 3С 273, имеет колоссальную массу в миллиарды раз больше массы Солнца.) При вращении диска газы, составляющие его, сжимаются. Наряду с трением частиц газа это создает невообразимо высокие температуры. Наибольшая энергия излучения исходит от внутренней части аккреционного диска, который вращается максимально быстро и потому имеет наибольшую температуру. Размер диска составляет триллионы километров в поперечнике, и при захвате его частиц черной дырой в 3С 273 (размером миллиард километров) испускаются гамма- и рентгеновские лучи.

В последние годы астрономы успешно наблюдают квазары с помощью приемников радиоволн, инфракрасного излучения и рентгеновских лучей. Оказывается, существуют два газовых лепестка по обе стороны от активной галактики, или квазара, в центре которой находится сверхмассивная черная дыра, окруженная аккреционным диском. Из внутренней части диска перпендикулярно ему вырываются в противоположные стороны две узких струи электронов (джеты), движущиеся с околосветовыми скоростями и излучающие радиоволны. Джеты простираются в окружающий космос на огромные расстояния — сотни тысяч триллионов километров, в пять-десять раз больше целой галактики, в которой находится квазар. Когда джеты врываются в лепестки газа, они возбуждают находящиеся в них атомы, и при этом излучаются радиоволны. Излучение самых больших квазаров настолько интенсивно, что оно затмевает звезды родной галактики, и может показаться, что существует только одна звезда, один квазизвездный объект — квазар[87]. Квазары встречаются только в старых галактиках. Они очень далеки от нас и во времени, и в пространстве. С течением времени аккреционный диск вокруг вращающейся черной дыры поглощает все частицы газа, и квазар гаснет. И мы можем только предполагать, что там, в этих областях, существуют миллионы черных дыр.

Открытия 1960-х годов полностью подтвердили теорию Чандры, высказанную им тридцать лет назад, и показали, насколько был не прав тогда Эддингтон.

<<< Назад
Вперед >>>

Генерация: 5.105. Запросов К БД/Cache: 3 / 1
Вверх Вниз