Книга: Мусорная ДНК. Путешествие в темную материю генома

Опасное повторение

<<< Назад
Вперед >>>

Опасное повторение

Возможно, это даже хорошо. Рассмотрим некоторые последствия, которые приносит грызунам действие мутационного механизма такого типа. Существует генетическая линия мышей, у которых такая мутация приводит к отсутствию хвоста. Проблема сама по себе невеликая, но при этом еще и не развиваются почки, а это уже очень скверно2. Дело в том, что встраивание повторяющейся последовательности в данном случае приводит к чрезмерной экспрессии одного из близлежащих генов. У другой линии мышей такая вставка отключает один из важных генов, регулирующих центральную нервную систему. В результате животные во время опытов испытывают спазмы, а кроме того, живут всего две недели3.

К похожему выводу о потенциальном воздействии подобных повторов можно прийти, анализируя противоположное явление, то есть рассматривая области генома, где эти повторы практически никогда не встречаются.

Существует группа генов, именуемая Hox-кластером. Они играют важнейшую роль, ибо управляют развитием сложных многоклеточных организмов. В ходе развития организма гены кластера включаются в определенном порядке, и их экспрессия жестко регулируется. Если порядок включения нарушится, это может привести к тяжелым и далеко идущим последствиям. Важность Hox-кластера впервые показали на примере дрозофил. У мушек с мутациями в этих генах развились необыкновенные свойства. К примеру, на голове у них вместо антенн появляется пара ног (самый известный пример)4.

Подобно мухам, млекопитающие также полагаются на правильную картину экспрессии Hox-генов, нужным образом формирующую строение тела. У человека мутации в Hox-кластере довольно редки — вероятно, благодаря тому, что эти гены играют такую важную роль. Однако ученые показали, что мутация хотя бы в одном Hox-гене приводит к возникновению дефектов конечностей5.

Hox-кластер — одно из немногих мест человеческого генома, где почти нет рассеянных повторяющихся элементов. Это позволяет предположить, что даже сравнительно безобидные генетические гости способны влиять на экспрессию генов и что эволюция позаботилась о том, чтобы они не очень-то вольничали в определенных областях генома. Удалось выяснить, что Hox-кластер также почти свободен от таких повторов у других приматов и у грызунов.

Наличие в геноме рассеянных повторов может приводить к неожиданным последствиям. Один из необычных классов повторов называется ЭРВ (эндогенными ретровирусами). ВИЧ (вирус иммунодефицита человека, вызывающий СПИД) — как раз пример ретровируса. Генетический материал таких вирусов состоит из РНК, а не из ДНК. Вирусная РНК копируется для образования ДНК, которая затем может встраиваться в геном организма-хозяина. Этот геном воспринимает такую ДНК как свою собственную, производя новые вирусные компоненты и, в конечном счете, новые вирусы.

Давным-давно, на заре нашей эволюционной истории, какие-то ретровирусы прижились в геномах наших эволюционных предков. Многие из них теперь представляют собой «геномные окаменелости». Какие-то части ретровирусных последовательностей оказались утраченными, а значит, эти последовательности уже больше не могли производить вирусные частицы. Однако некоторые по-прежнему содержат в себе все компоненты, необходимые для создания новых вирусов. Обычно клетка держит их под строгим контролем6. Кроме того, ученые обнаружили, что иммунная система не только борется с вирусами, которые заражают нас, проникая извне. Она играет роль и в контролировании эндогенных вирусов. Генетически модифицированные мыши, которых сознательно лишили определенных компонентов нормальной иммунной системы, испытывают целый ряд проблем из-за того, что эти вирусы, таящиеся в их собственных геномах, вновь активизируются7.

Возможно, изучение процессов контроля эндогенных ретро-вирусов поможет справиться с одной давней проблемой здравоохранения. Каждый год тысячи людей умирают, не дождавшись органов для пересадки. Дело в том, что доноров вечно не хватает. Так, примерно треть пациентов, чью жизнь удалось бы спасти с помощью пересадки сердца, умирает, так и не получив нужного донорского органа8.

А если использовать сердца животных? Такой процесс называется ксенотрансплантацией (от греческого слова, означающего «чужеродный»). Для пересадки сердца лучше всего подходит свинья: ее сердце примерно такого же размера и мышечной силы, как и аналогичный орган человека.

Конечно, придется преодолеть массу технических сложностей (не говоря уж об этических: некоторые религиозные группы могут воспротивиться такому использованию свиньи, «нечистого животного»)9. Чтобы справиться с какими-то из этих трудностей, сейчас выращивают генетически модифицированных свиней, которые не вызывают слишком уж активной иммунной реакции, возникающей, когда в сердечно-сосудистую систему человека вводят свиные клетки. Но тут возможна и другая проблема. Геном свиньи, как и геном человека, содержит эндогенные ретровирусы. Однако эндогенные ретровирусы свиньи отличаются от ЭРВ человека. Работы, проведенные еще в конце XX века, показали: некоторые из этих свиных ретровирусов в определенных условиях способны заражать человеческие клетки10.

Вот один из возможных сценариев, беспокоящий некоторых ученых. Любой пациент, которому пересадят сердце свиньи, будет неизбежно получать препараты, подавляющие иммунитет, чтобы предотвратить отторжение чужеродного органа. Реактивация эндогенных ретровирусов более вероятна как раз в тех случаях, когда иммунитет человека подавлен. Системы человеческого организма в ходе эволюции приобрели способность контролировать эндогенные ретровирусы, которые находились в нашем геноме с тех пор, как человек возник. Однако этих систем может оказаться недостаточно для того, чтобы столь же эффективно контролировать ЭРВ, таящиеся в геноме свиньи. Теоретически это может означать, что эндогенные ретровирусы способны в один прекрасный момент вырваться из пересаженного свиного сердца, атаковать другие клетки реципиента-человека и вторгнуться в них. После чего, быть может, они даже начнут размножаться, захватывая все новые участки организма.

Более поздние исследования позволяют предположить, что этот риск, возможно, преувеличивали ученые прошлого11, однако речь все равно идет об участке мусорной ДНК, требующем тщательного контроля при ксенотрансплантации (если эта процедура вообще когда-нибудь станет реальностью).

Другие повторяющиеся последовательности, включенные в геном, могут негативно влиять на здоровье более непосредственным образом. В геноме есть области, где большие фрагменты, иногда длиной в сотни тысяч пар нуклеотидных оснований, в ходе эволюции человека сравнительно недавно претерпели удвоение. «Оригинал» и «дубликат» могут в итоге оказаться в очень далеких друг от друга частях генома, даже в разных хромосомах.

Такие области способны вызывать неприятности при формировании яйцеклеток или сперматозоидов. В их формировании есть одна весьма важная стадия, когда хромосомы подвергаются процессу так называемого кроссинговера (перекреста хромосом). Хромосома, наследуемая вами от матери, «спаривается» с аналогичной хромосомой вашего отца, и затем они обмениваются друг с другом фрагментами ДНК. Это один из способов увеличить вариативность генофонда, перемешивая комбинации генов. Если в геноме есть два участка, выглядящие весьма схоже из-за повторяющихся последовательностей, но все же не представляющие собой «настоящую» хромосомную пару, такой кроссинговер может происходить между областями генома, которые не предназначены для обмена генетическим материалом. В результате могут появиться яйцеклетки или сперматозоиды, у которых имеются лишние участки ДНК или не хватает важнейших участков12.

У тех, кто наследует такие геномные дефекты, могут возникать особого рода заболевания. Одним из примеров является болезнь Шарко-Мари-Тута, при которой наблюдаются дефекты нервов, передающих ощущения и контролирующих двигательные функции13. Другой пример — синдром Вильямса-Бойрена, который характеризуется отставанием в развитии, относительно небольшим ростом пациента, целым рядом необычных поведенческих черт в сочетании со слабо выраженной неспособностью к обучению и дальнозоркостью14.

Удвоенные области генома, вызывающие проблемы при кроссинговере, часто содержат множество генов, кодирующих белки. Поэтому неудивительно, что у пациентов, страдающих от последствий аномального перекреста хромосом, зачастую столь сложный набор симптомов. Изменение количества этих многочисленных генов с высокой вероятностью затронет не один физиологический путь, а несколько.

Может показаться странным, что эти удвоенные области сохранились на протяжении эволюции человека, ведь они порождают такие серьезные проблемы. На самом-то деле клетки, формирующие яйцеклетки и сперматозоиды, обычно справляются со своей работой хорошо и не смешивают те части хромосом, которые смешивать не надо. Более этого, удвоения позволяют человеческому геному довольно быстро (по эволюционным меркам) увеличивать количество определенных генов. Это весьма полезная способность. «Запасная» копия может выступать в роли «сырья» для эволюционной адаптации. Несколько изменений в нуклеотидной последовательности гена, кодирующего белок, могут привести к созданию белка, функция которого отличается от функции белка-«оригинала», хотя и схожа с ней. Вероятно, именно так возникло обширное семейство генов, которые позволяют млекопитающим распознавать широчайший диапазон различных запахов15. Это еще один пример своеобразной бережливости, присущей геному человека. Наш геном предпочитает приспособить к выполнению новых задач уже существующие гены и белки, а не создавать их с нуля. Геном любит варианты типа «два в одном» или «два по цене одного».

<<< Назад
Вперед >>>

Генерация: 5.311. Запросов К БД/Cache: 3 / 0
Вверх Вниз