Книга: Эволюция. Классические идеи в свете новых открытий

Эволюция под управлением компьютера

<<< Назад
Вперед >>>

Эволюция под управлением компьютера

Наш рассказ об эволюционных экспериментах был бы неполон, если бы мы забыли упомянуть опыты с искусственными репликаторами — опыты, имеющие, между прочим, немалое практическое значение. Дарвиновская эволюция на наших глазах превращается в основу «высоких технологий» будущего.

Метод искусственной эволюции позволяет получать молекулы белков и РНК с заданными свойствами путем имитации естественных процессов: мутагенеза, размножения и отбора. Метод весьма эффективен, но пока трудоемок и дорог. Сначала нужно синтезировать исходную «библиотеку» разнообразных молекул, затем каким-то образом отобрать молекулы, обладающие нужным свойством хотя бы в минимальной степени. Отобранные молекулы размножают, внося в них небольшие случайные изменения (мутации), затем снова производится отбор — и так до тех пор, пока цель не будет достигнута. Большинство операций производится вручную, причем для каждого этапа приходится специально подбирать оптимальные условия «среды».

Конечно, специалисты мечтают автоматизировать процесс. Это позволило бы ускорить и удешевить получение нужных молекул, а заодно и сделать всю процедуру более похожей на то, что происходит в природе. Ведь живые организмы эволюционируют сами, без сознательного контроля извне.

Необходимым условием такой автоматизации является способность эволюционирующих молекул к размножению — производству собственных копий. Кроме того, если мы хотим, чтобы в популяции размножающихся молекул сам собой шел естественный отбор, необходимо добиться, чтобы скорость их размножения зависела от того свойства, которое мы хотим развить в ходе эксперимента. Те молекулы, у которых данное свойство выражено сильнее, должны оставлять больше потомков. Иными словами, необходимо превратить подопытные объекты в полноценные репликаторы, да еще и направить их эволюцию в нужную нам сторону.

Эти условия легко соблюсти, когда речь идет о целых организмах, но очень непросто, когда дело касается отдельных молекул. Однако среди известных на сегодняшний день рибозимов есть подходящие. Один из них и использовали биологи из Скриппсовского института (Ла-Холья, Калифорния) при разработке компьютеризованного устройства для искусственной эволюции (Paegel, Joyce, 2008).

Этот рибозим — РНК-лигаза класса I — был искусственно получен в 1993 году. Его функция состоит в том, что он катализирует присоединение (лигирование) другой молекулы РНК к самому себе. Субстратом (присоединяемой молекулой) может служить не всякая цепочка нуклеотидов: она должна содержать участок, комплементарный одному из участков рибозима. Комплементарные участки рибозима и субстрата соединяются водородными связями, образуя «уотсон-криковские» пары. При этом свободные концы субстрата и рибозима оказываются рядом. Концы «сшиваются» — происходит лигирование.

В качестве субстрата использовался олигонуклеотид смешанной природы: короткая молекула РНК, присоединенная к более длинной молекуле ДНК. Главная хитрость в том, что ДНК-овая часть субстрата содержит промотор, т. е. участок, к которому может прикрепиться фермент ДНК-зависимая РНК-полимераза. Этот фермент осуществляет транскрипцию, т. е. синтез РНК на матрице ДНК. Без промотора молекула ДНК не может быть транскрибирована.

Благодаря наличию промотора в молекуле субстрата рибозим РНК-лигаза приобретает требуемое свойство — способность размножаться, но только при условии успешного выполнения рибозимом своей функции.

Для того чтобы рибозим начал размножаться, нужно добавить в среду два фермента: ДНК-зависимую РНК-полимеразу и обратную транскриптазу — фермент, осуществляющий синтез ДНК на матрице РНК (обратную транскрипцию). Вдвоем эти ферменты успешно осуществляют синтез копий рибозима, но только в том случае, если рибозим предварительно присоединил к себе субстрат с промотором. При размножении копируется не вся молекула (рибозим вместе с присоединенным субстратом), а только сам рибозим.

Таким образом, рибозимы с высокой каталитической активностью — те, которые быстро находят, распознают и присоединяют к себе субстрат, — будут размножаться быстро, а медлительные рибозимы — медленно. Следовательно, будут сами собой отбираться, выигрывая конкуренцию за субстрат, самые эффективные рибозимы.

Компьютеризированная установка для искусственной эволюции, изготовленная учеными, устроена следующим образом. Ее главная часть представляет собой тонкую стеклянную трубочку, замкнутую в кольцо диаметром 1 см. В кольцевой резервуар помещается исходный рибозим. К кольцу присоединены дополнительные трубочки, по которым в систему подаются ферменты, субстрат и нуклеотиды, необходимые для синтеза РНК и ДНК. В кольце имеются клапаны, открытие и закрытие которых позволяет контролировать подачу веществ, перемешивание и обновление реакционной смеси. Работой клапанов управляет компьютер.

В кольцевом резервуаре рибозимы, сумевшие присоединить к себе молекулу субстрата, размножаются при помощи ферментов. В раствор добавлен флюоресцирующий краситель, присоединяющийся к молекулам рибозима. По силе флюоресценции можно следить за концентрацией рибозима. Как только эта концентрация увеличивается в десять раз по сравнению с исходной, компьютер запускает программу «разбавления». 90 % реакционной смеси удаляются из кольцевого резервуара (вместе с соответствующей частью молекул рибозима) и заменяются свежим раствором реагентов (субстрата и ферментов). Затем включается программа перемешивания (оставшиеся в резервуаре молекулы рибозима перемешиваются с новой порцией реагентов). Цикл повторяется раз за разом под управлением компьютера без всякого вмешательства человека.

За ходом эволюции можно следить по сокращению времени, затрачиваемого на прохождение системой одного цикла. Длительность цикла зависит от того, насколько быстро удесятерится концентрация рибозима, а это напрямую зависит от его (рибозима) эффективности. По мере того как в ходе эволюции рибозимы становятся все более эффективными, время прохождения циклов сокращается.

В ходе эволюции в кольцевом резервуаре точность копирования молекул рибозима весьма высока, мутации возникают редко. Поэтому для ускорения эволюции исследователи несколько раз прерывали автоматизированный процесс, извлекали реакционную смесь и подвергали молекулы рибозима интенсивному случайному мутированию. Это делалось при помощи «неточных», склонных к ошибкам ферментов-полимераз. Затем смесь рибозимов-мутантов возвращали в установку, и эволюция продолжалась под управлением компьютера. Исследователи использовали эти перерывы еще и для того, чтобы постепенно сокращать концентрацию субстрата в реакционной смеси — таким образом они «приучали» эволюционирующие молекулы обходиться все меньшими количествами субстрата. Рибозимам приходилось приспосабливаться к жизни во все менее благоприятных условиях.

После 70 часов искусственной эволюции с пятью «перерывами на мутирование» каталитическая активность рибозима увеличилась в 90 раз. Для этого потребовалось всего 500 циклов инкубации и разбавления. Концентрация субстрата была снижена к концу эксперимента в 20 раз по сравнению с исходной.

Поскольку часть реакционной смеси изымалась из установки в конце каждого цикла, исследователи имели возможность в деталях проследить эволюцию подопытной популяции рибозимов. Выяснилось, что 90-кратный рост эффективности фермента произошел благодаря последовательному закреплению 11 мутаций. Авторы изучили влияние каждой из них по отдельности. Оказалось, что 11 мутаций подразделяются на четыре функциональные группы, каждая из которых имеет свои особенности. Три из четырех групп повышают эффективность рибозима сами по себе, независимо от наличия или отсутствия других мутаций. Четвертая группа сама по себе не увеличивает, а в два раза уменьшает эффективность рибозима, однако в сочетании с другими мутациями она оказывает положительный эффект. Это яркий пример эпистаза.

Авторы исследования оптимистично заключают, что в недалеком будущем получить новый рибозим методом искусственной эволюции будет не труднее, чем запустить компьютерную программу.

<<< Назад
Вперед >>>

Генерация: 3.916. Запросов К БД/Cache: 3 / 1
Вверх Вниз