Книга: Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий

Лантаноиды в практике

<<< Назад
Вперед >>>

Лантаноиды в практике

Осенью 1970 г. Ученый совет Института минералогии, геохимии и кристаллохимии редких элементов АН СССР собрался на расширенное заседание с довольно необычной повесткой дня. Обсуждались возможности редкоземельных элементов «в свете проблем сельского хозяйства».

Вопрос о влиянии этих элементов на живые организмы возник не случайно. С одной стороны, известно, что редкие земли часто входят как примесь в состав важнейших для агрохимии минералов — фосфоритов и апатита. С другой стороны, выявлены растения, могущие служить биохимическими индикаторами лантана и его аналогов. Так, например, в золе листьев южного ореха гикори до 2,5% редкоземельных элементов. Повышенная концентрация этих элементов обнаружена также в сахарной свекле и люпине. Содержание редкоземельных элементов в почве тундр достигает почти 0,5%.

Маловероятно, чтобы эти распространенные элементы не влияли на развитие растений, а возможно, и организмов, стоящих на других ступенях лестницы эволюции. Еще в середине 30-х годов советский ученый А.А. Дробков исследовал влияние редких земель па разные растения. Он экспериментировал с горохом, репой и другими культурами, вводил редкие земли вместе с бором, марганцем или без них. Результаты опытов говорили, что редкие земли нужны для нормального развития растений… Но прошло четверть века, прежде чем эти элементы стали относительно доступны. Окончательный ответ на вопрос о биологической роли лантана и его команды еще предстоит дать.

Металлурги в этом смысле значительно обогнали агрохимиков. С лантаном и его командой связано одно из самых значительных событий последних десятилетий в черной металлургии.

Высокопрочный чугун обычно получали, модифицируя его магнием. Физический смысл этой добавки станет ясным, если вспомнить, что в чугуне 2–4,5% углерода в виде чешуйчатого графита, который и придает чугуну главный его технический недостаток — хрупкость. Добавка магния заставляет графит перейти в более равномерно распределяющуюся в металле шаровидную или глобулярную форму. В результате значительно улучшается структура, а с ней и механические свойства чугуна. Однако легирование чугуна магнием требует дополнительных затрат: реакция идет очень бурно, расплавленный металл брызжет во все стороны, в связи с чем приходилось сооружать для этого процесса специальные камеры.

Редкоземельные металлы действуют на чугун аналогично: «убирают» окисные примеси, связывают и выводят серу, способствуют переходу графита в глобулярную форму. И при этом не требуют специальных камер — реакция протекает спокойно. А результат?

На тонну чугуна вводят всего 4 кг (0,4%) сплава ферроцерия с магнием, и прочность чугуна увеличивается вдвое! Такой чугун во многих случаях можно использовать вместо стали, в частности при изготовлении коленчатых валов. Мало того, что высокопрочный чугун на 20–25% дешевле стальных отливок и в 3–4 раза дешевле стальных поковок. Стойкость против истирания у чугунных шеек валов оказалась в 2–3 раза выше, чем у сталь- пых. Колончатые валы из высокопрочного чугуна уже работают в тепловозах и других тяжелых машинах.

Редкоземельные элементы (в виде мишметалла и ферроцерия) добавляют и в сталь разных сортов. Во всех случаях эта добавка работает как сильный раскислитель, превосходный дегазатор и десульфатор. В некоторых случаях редкими землями легируют… легированную сталь. Хромоникелевые стали трудно прокатывать — всего 0,03% мишметалла, введенные в такую сталь, намного увеличивают ее пластичность. Это облегчает прокатку, изготовление поковок, обработку металла резанием.

Редкоземельные элементы вводят и в состав легких сплавов. Известен, например, жаропрочный сплав алюминия с 11% мишметалла. Добавки лантана, церия, неодима и празеодима позволили в три с лишним раза поднять температуру размягчения магниевых сплавов и одновременно повысили их коррозионную стойкость. После этого сплавы магния с редкоземельными элементами стали применять для изготовления деталей сверхзвуковых самолетов и оболочек искусственных спутников Земли.

Редкоземельные добавки улучшают свойства и других важных металлов — меди, хрома, ванадия, титана… Не удивительно, что металлурги год от года все шире используют редкоземельные металлы.

Лантан и его аналоги нашли применение и в других областях современной техники. В химической и нефтяной промышленности они (и их соединения) выступают в качестве эффективных катализаторов, в стекольной — как красители и как вещества, придающие стеклу специфические свойства. Разнообразно применение лантаноидов в атомной технике и связанных с нею отраслях. Но об этом — позже, в разделах, посвященных каждому из лантаноидов. Укажем только, что даже созданный искусственно прометий нашел применение: энергию распада прометия-147 используют 6 атомных электрических батарейках. Одним словом, время безработицы редкоземельных элементов закончилось давно и бесповоротно.

Не надо считать, однако, что все проблемы, связанные с «узлом» в периодической системе, уже разрешены. В наши дни особенно актуально звучат слова Дмитрия Ивановича Менделеева о «редких землях»: «Тут скопилось за последние годы очень много нового»… Считать, что познано все и вся, что редкоземельная тематика себя исчерпала, могут только дилетанты. Специалисты же, напротив, уверены, что познание лантана и его команды только начинается, что эти элементы еще не раз удивят научный мир. A может, — не только научный.

РЕАКТОРНЫЙ ЯД. Природный лантан состоит из двух изотопов с массовыми числами 138 и 139, причем первый (его доля всего 0,089%) радиоактивен. Он распадается путем К-захвата с периодом полураспада 3,2?1011 лет. Изотоп лантан-139 стабилен. Между прочим, он образуется в атомных реакторах при распаде урана (0,3% массы всех осколков). Этот изотоп считается реакторным ядом, поскольку он довольно активно захватывает тепловые нейтроны, что характерно и для лантаноидов. Из искусственных изотопов лантана наибольший интерес представляет лантан-140 с периодом полураспада 40,22 часа. Этот изотоп применяют в качестве радиоактивного индикатора при изучении процессов разделения лантана и лантаноидов.

КАКОЕ ИЗ ТРЕХ? Элементы, следующие за лантаном, называют редкоземельными, или лантанидами, или лантаноидами. Какое из этих названий наиболее оправданно? Термин «редкие земли» появился в XVIII в. Теперь его относят к окислам скандия, иттрия, лантана и его аналогов: первоначально же этот термин имел более широкий смысл. «Землями» вообще называли все тугоплавкие окислы металлов. По отношению к элементам с атомными номерами от 57 до 71 это справедливо: температура плавления La2O3 — около 2600°C.В. чистом виде многие из этих «земель» редки и поныне. Но о редкости редкоземельных элементов в земной коре говорить уже не приходится…

Термин «лантаниды» ввели для того, чтобы показать, что следующие четырнадцать элементов идут за лантаном. Но тогда с равным успехом фтор можно назвать кислородидом (или оксидом) — он же следует за кислородом, а хлор — сульфидом… Но в понятия «сульфид», «фосфид», «гидрид», «хлорид» и так далее химия издавна вложила другой смысл. Поэтому термин «лантаниды» большинство ученых считают неудачным и пользуются им все реже.

«Лантаноиды» — более оправданно. Окончание «оид» указывает на подобие. «Лантаноиды» — значит «лантаноподобные». Видимо, этим термином и следует пользоваться для обозначения 14 элементов — аналогов лантана.

«НОВАЯ ИСТОРИЯ». В истории лантана и лантаноидов можно выделить два отрезка времени, особенно насыщенных открытиями и спорами. Первый из них относится к концу XIX в., когда лантаноиды открывали и «закрывали» так часто, что в конце концов это стало даже не интересно… Второй бурный период — 50-е годы XX в., когда развитие атомной техники помогло получать большие количества редкоземельного сырья и стимулировало новые исследования в этой области. Именно тогда наметилась тенденция получать и применять редкоземельные элементы не в смеси, а каждый по отдельности, используя их специфические свойства. Не случайно за 15 лет (с 1914 по 1958 г.) количество научных публикаций, посвященных лантаноидам, выросло в 7,0 раза, а по некоторым индивидуальным элементам и того больше: по гольмию, например, — в 24, а по тулию — в 45 раз!

МАСКИРУЯСЬ ПОД КРАХМАЛ. Одно из соединений лантана — его основной ацетат — ведет себя как крахмал, если к нему добавляют иод. Белый гель принимает ярко-синюю окраску. Этим свойством аналитики иногда пользуются для открытия лантана в смесях и растворах.

ДВУХВАЛЕНТЕН ЛИШЬ ФОРМАЛЬНО. Установлено, что во всех соединениях лантан проявляет одну и ту же валентность — 3+. Но как тогда объяснить существование серо-черного дигидрида LaH2 и желтого сульфида LaS? Установлено, что LaH2 — это относительно устойчивый полупродукт реакции образования LaH3 и что в обоих гидридах лантан трехвалентен. В молекуле дигидрида есть металлическая связь La—La. С сульфидом все объясняется еще проще. Это вещество обладает высокой электропроводностью, что заставляет полагать наличие в нем ионов La3+ и свободных электронов. Кстати, LaH2 тоже хорошо проводит ток, в то время как LaH3 — полупроводник.

<<< Назад
Вперед >>>

Генерация: 0.377. Запросов К БД/Cache: 0 / 0
Вверх Вниз