Книга: Сейчас. Физика времени

Сойти с ума

<<< Назад
Вперед >>>

Сойти с ума

Первым человеком, предложившим идею корпускулярно-волнового дуализма, был сам Эйнштейн. Идея эта прозвучала в статье 1905 года, посвященной фотоэффекту; в ней описывалось, как свет выбивает электрон из металла. Эйнштейн предположил, что свет действительно представляет собой волну, но когда его регистрируют или он сам выбивает электрон из поверхности, это всегда происходит в форме вспышки – а такое поведение заставляет вспомнить скорее о частице, чем о волне[188]. Иногда это происходит мгновенно, быстрее, чем классическая электромагнитная волна могла бы донести до места достаточное количество энергии. Как отмечалось ранее, Эйнштейн сказал, что энергия светового кванта должна быть связана с частотой волны уравнением E = hf, где h – постоянная Планка, то есть число, которое Планк получил в ходе исследования свечения горячих объектов[189].

Эйнштейну в голову не приходило, что то же самое уравнение может быть применимо к электронам. Такое предположение в 1924 году высказал Луи де Бройль в докторской диссертации. Это был настоящий прорыв, сыгравший роль искры зажигания и инициировавший стремительное развитие квантовой физики. Благодаря де Бройлю выяснилось, что электроны и фотоны очень похожи; различия между ними, которые когда-то находились в центре внимания (только у одного из этих объектов есть масса покоя; только у одного есть электрический заряд), отошли на второй план. Оба они – всего лишь квантовые частицы-волны (частолны? волницы?). Произошло великое объединение физики.

За три следующих года Шрёдингер, Борн, Гейзенберг и другие выработали уравнения, описывающие реакцию этих волн на действие внешних сил. Затем Дирак[190] показал, как примирить уравнение для электрона с теорией относительности (хотя к измерительному парадоксу не обращался); он вывел для него релятивистское волновое уравнение. 1920-е годы были периодом невероятно быстрого развития, поражавшего воображение даже самих физиков.

Призрачная атмосфера квантовой физики тревожила многих ученых тогда и тревожит до сих пор. Как правило, студентам – физикам и химикам требуется не один год, чтобы привыкнуть и освоиться в этой области. Физик и математик Фримен Дайсон однажды сказал мне, что студент, привыкая к квантовой физике, проходит три стадии. На первой удивляется: как так может быть? На второй стадии научается производить нужные математические манипуляции и знакомится с невероятными возможностями квантово-физических вычислений. Математика предсказывает результаты экспериментов с поразительной точностью. Наконец, финальная стадия, по Дайсону, – это когда студент уже не помнит, что первоначально сам предмет казался ему таким загадочным[191].

Не все физики доходят до финальной стадии и достигают удовлетворения. Великим преемником Эйнштейна, на мой взгляд, был Ричард Фейнман. Больше, чем кто-либо в XX веке (возможно, за исключением Энрико Ферми), Фейнман обладал глубокой интуицией, которая вела его к необычайным озарениям и открытиям в различных областях этой науки. Но он всегда держался подальше от «интерпретации» квантовой физики. В своей яркой, бруклинской разговорной манере Фейнман предостерегал студентов: «Не спрашивайте себя постоянно: “Как так может быть?” – потому что иначе сойдете с ума и угодите в тесный тупик, из которого еще никто не выходил».

<<< Назад
Вперед >>>

Генерация: 0.834. Запросов К БД/Cache: 3 / 1
Вверх Вниз