Книга: Сейчас. Физика времени

Самая большая ошибка Эйнштейна

<<< Назад
Вперед >>>

Самая большая ошибка Эйнштейна

Ускорение Вселенной хорошо согласовывается с общей теорией относительности Эйнштейна. Вспомните – до открытия Хабблом расширения Вселенной Эйнштейн полагал, что она статична, а галактики всегда находятся на своих местах. Чтобы устранить фактор их взаимного гравитационного притяжения, Эйнштейн даже ввел космологическую постоянную, отталкивающую силу, объясняющую статичность Вселенной (это было до открытия Хаббла). Хаббл обозначил эту постоянную значком ?, заглавной буквой греческого алфавита лямбда. Эта постоянная обозначала своего рода антигравитацию, которая, однако, происходила от пустого пространства, а не от массы. Я представляю ее себе как пространство, отталкивающее самое себя.

Когда Хаббл обнаружил, что Вселенная расширяется, постоянная лямбда оказалась ненужной, и научное сообщество стало считать ее нулем. Как я отметил в главе 12, согласно утверждению Георгия Гамова, Эйнштейн считал введение лямбды самой большой ошибкой своей жизни. Если бы он не добавил ее в свои уравнения, мог предсказать расширение Вселенной. И все-таки самой большой ошибкой Эйнштейна было то, что он назвал ошибкой свою космологическую постоянную.

Удобным способом включения космологической постоянной ? в уравнения общей теории относительности можно назвать ее перенос (математически) в энергетическую часть уравнения и объединение с тензором Т, обозначающим плотность энергии. Это равноценно тому, чтобы представлять лямбду в качестве некоей величины энергии. И в самом деле, такой подход уже становится вполне привычным, а присутствие лямбда-члена объясняется тем, что пустое пространство заполнено темной энергией; его же плотность и давление зависят от значения ?. Когда космологическая постоянная включается в уравнения Эйнштейна таким образом, уравнения не меняются: лямбда-члена в них как бы нет, но энергия и плотность пустого пространства больше не считаются нулем.

Темная энергия, заполняющая пустое пространство, снова звучит как напоминание об эфире… но так оно и есть. В представлениях современной космологии пустое пространство отнюдь не пустое. В дополнение к темной энергии оно, как полагают физики, включает в себя поля Хиггса[145], что заставляет частицы казаться обладающими большей массой, чем без этих полей. А Поль Дирак высказал даже идею, что пустое пространство заполнено бесконечным морем электронов с отрицательной энергией, – самое ошеломляющее предположение, которое когда-либо исходило от видного физика. (Подробнее об этом в главе 20.) Вакуум совсем не пустой.

Одна из причин, по которой теоретики любят использовать лямбда-член в качестве некоего показателя энергии, заключается в том, что они ждали его появления, руководствуясь соображениями квантовой физики. Они предполагали, что «квантовые флуктуации вакуума» будут переносить темную энергию и приведут к отрицательному давлению. Почему тогда не признать, что это предугадывание темной энергии? Дело в том, что они получили совершенно неправильные цифры. Если, согласно имеющимся научным данным, темная энергия, которая ускоряет расширение Вселенной, имеет плотность массы 10?29 г/см?, то это же значение, напророченное квантовой теорией, выражается величиной 1091. Теория ошиблась в 10120 раз. Это расхождение было названо «худшим теоретическим предсказанием в истории физики». Прорицание квантовой физики относительно темной энергии ошибочно на сотню квинтиллионов гуголов.

Могут ли квантовые флуктуации быть источником темной энергии? Вероятно. Некоторые теоретики пытаются внести расчетные поправки в свои теории, но создается впечатление, что нет пути к изменению величины во столько раз. Предполагаю, что правильное значение квантовых флуктуаций в конечном счете составит нуль (если наша квантовая теория верна) и что темная энергия в итоге окажется чем-то совершенно другим, аналогичным полям Хиггса (о них поговорим в главе 15). Но это только мое предположение.

<<< Назад
Вперед >>>

Генерация: 2.786. Запросов К БД/Cache: 3 / 0
Вверх Вниз