Книга: Кеплер. Движение планет. Танцы со звездами.

КОНИЧЕСКИЕ ФИГУРЫ

<<< Назад
Вперед >>>

КОНИЧЕСКИЕ ФИГУРЫ

Эллипс с нулевым эксцентриситетом и его частный случай, окружность, являются кривыми и видом конических сечений, то есть сечений конуса плоскостью. В зависимости от взаимного расположения плоскости и конуса мы получаем эллипс, гиперболу и параболу. Эти названия были предложены Аполлонием Пергским (262-190 до н.э.), первым известным автором, изучавшим конические сечения.

Орбиты планет являются эллипсами, однако при гравитационном искривлении они могут иметь вид и других конических сечений. Когда объект приближается с большого расстояния на большой скорости, из-за воздействия гравитации его траектория искривляется. В большинстве случаев объект продолжает свое движение и удаляется в бесконечность, следуя по гиперболической траектории. Кометы длинного периода имеют такой большой эксцентриситет, что их траектория практически параболическая, то есть занимает промежуточное место между эллиптической и гиперболической. При открытых гиперболических траекториях объект и точечная масса не формируют бинарную (двойную) систему в точном значении этого слова. Звезды в галактике настолько малы по сравнению с обычным межзвездным расстоянием (7 х 108 метров по сравнению с 1017 метров), что гравитационные взаимодействия между ними крайне низки. Столкновения происходят настолько редко или они так слабы, что две сливающиеся галактики могут сохранять свои уникальные характеристики в течение значительных периодов времени. Малое количество столкновений звезда-звезда ослабило теорию о том, что Солнечная система возникла в результате столкновения двух звезд (гипотеза о катаклизме). Сегодня считается, что Солнце и планеты являются ровесниками, рожденными независимо друг от друга от одной протосолнечной туманности. Изучая гравитационное взаимодействие между двумя звездами, следует учитывать, что речь идет о траекториях, соответствующих коническим сечениям, в то время как двойные звезды двигаются по эллиптическим орбитам.



Конические сечения, полученные при сечении конуса плоскостью.

Также Кеплеру пришло в голову мысленно переместиться на Марс и, соответствующим образом трансформировав данные, получить детальное описание движения Земли.

В конце концов ученый увидел, что самая подходящая орбита – это эллипс, и сформулировал первый из своих законов: «Орбита планеты является эллипсом, в одном из фокусов которого находится Солнце». Этот закон подверг испытанию математический талант Иоганна Кеплера, однако результат достоин всякого восхищения.

Следующая удачная идея, которая привела к появлению второго закона, рассказана самим Кеплером:

«Таким образом, существует бесконечное количество точек на орбите и, соответственно, бесконечное количество расстояний, и тогда мне пришла в голову мысль, что сумма этих расстояний заключена в площади орбиты. Я вспомнил, что Архимед разделил таким же образом площадь круга на бесконечное количество треугольников».

Мы видим здесь идею, предшествующую дифференциальному анализу. Второй закон, о линейных скоростях, также сложно вывести даже сегодня. Его формулировка очень витиевата, однако не лишена изящества и, что самое главное, точности: «площади, которые могут быть пройдены за одинаковые промежутки времени, одинаковы» независимо от положения орбиты, на которой находится планета. Этот закон позволяет определить, как планета ускоряется от афелия к перигелию и замедляется от перигелия к афелию. Его практическое применение довольно сложно, и для того чтобы узнать положение планеты на орбите в каждый момент времени, сегодня применяется принцип сохранения кинетического момента.

<<< Назад
Вперед >>>

Генерация: 0.058. Запросов К БД/Cache: 0 / 0
Вверх Вниз