Книга: Климат и деятельность человека

Астрономические факторы длительных колебаний климата

<<< Назад
Вперед >>>

Астрономические факторы длительных колебаний климата

Хорошо известно, что астрономическими факторами объясняется суточный ход погоды и внутригодовые изменения погоды и климата. Но существуют и долгопериодные климатические изменения, зависящие от астрономических факторов.

Астрономические факторы формирования климата определяются в основном параметрами земной орбиты, в зависимости от которых меняется расстояние от Земли до Солнца, углом наклона падающих солнечных лучей и процессами на самом Солнце. Эта группа факторов меняет величину S0, т. е. приходящую к Земле радиацию (инсоляцию), являющуюся функцией широты, времени года, времени суток, положения Земли, или же приводит в действие некоторые внутриатмосферные механизмы, влияющие на климат.

Мы уже отмечали, что палеоклиматологические данные подтвердили в колебаниях климата прошлого наличие периодичностей порядка 100 тыс., 41 тыс., 21 тыс. лет, связанных с соответствующими периодами колебаний параметров земной орбиты и наклонением оси Земли. К таким факторам относятся периодические изменения эксцентриситета земной орбиты (е), угла наклона плоскости земного экватора к плоскости орбиты (?) или угла наклона земной оси и прецессии орбиты, определяемой величиной е?sin ?, где ? — долгота перигелия, т. е. самой близкой к Солнцу точки орбиты, отсчитываемая от точки весеннего равноденствия.

Идея влияния параметров земной орбиты и наклона оси на S0 и приходящую инсоляцию была высказана еще в 1842 г. французским математиком Адамаром и затем развита в 1930—1938 гг. в работах югославского геофизика Миланковича.

Как известно, величина S0 обратно пропорциональна квадрату расстояния от Земли до Солнца. Вследствие эллиптичности земной орбиты это расстояние меняется, в связи с чем меняется и количество приходящей радиации к различным широтным зонам. После Миланковича расчеты эксцентриситета были повторены рядом американских и советских авторов за 30 млн. лет в прошлом и 1 млн. лет в будущем. Он колеблется в пределах 0,0007—0,0658 (в настоящее время равен 0,017) с периодами 90 тыс. — 100 тыс., 425 тыс. и 1200 тыс. лет.

Угол наклона ? составляет 22,068°—24,568° с периодами 41 тыс. и 200 тыс. лет (по Миланковичу этот период 40 400 лет, по некоторым американским данным угол ? колеблется за последние 500 тыс. лет от 21,8° до 24,4°), в настоящее время он равен 23,5°. Прецессия орбиты (параметр е?sin ?) колеблется в пределах от 0,03 до 0,07 относительно его значения в 1950 г. со средним периодом около 21 тыс. лет. Все эти периоды неплохо согласуются с имеющимися представлениями о колебании климата в плейстоцене. Источником изменения параметров земной орбиты является меняющееся гравитационное поле в системе планет Солнечной системы.

Расчеты движения Земли с учетом возмущений, создаваемых действием сил притяжения других планет, производились еще в XVIII столетии Ж. Л. Лагранжем, а затем уточнялись другими учеными. Они подтвердили наличие подобных колебаний. Расчеты показали, что в среднем отмеченные колебания параметров земной орбиты существенно не меняют приходящей к Земле суммарной радиации, но она перераспределяется между полушариями, широтными зонами, различными сезонами.

Если предположить, что эллиптичность орбиты, характеризуемая эксцентриситетом, — единственный климатообразующий фактор, то полушарие, находящееся в перигелии зимой (как сейчас северное полушарие), должно иметь более длинные и прохладные летние сезоны. В противоположном полушарии — в апогее зимой — более короткие теплые летние сезоны и более продолжительные холодные зимы. Сезонные контрасты должны быть увеличены в период максимальной эллиптичности орбиты, как примерно 20 тыс. лет назад, когда наблюдался один из наибольших максимумов этого параметра. Период таких изменений составляет порядка 90—100 тыс. лет. В настоящее время мы медленно приближаемся к периоду наименьшей эллиптичности, когда сезонные контрасты должны уменьшиться.

Временной ход эксцентриситета за последние 500 тыс. лет приведен на рис. 10, а. Этот фактор указывает на приближение к новой ледниковой эпохе. Временной ход угла наклона земной оси е за тот же период приведен на рис. 10, б. Хорошо видно, что последний максимум угла наклона наблюдался почти 8—10 тыс. лет назад, что соответствует времени существования климатического оптимума. Следующий минимум ожидается примерно через 20 тыс. лет. При минимальном угле наклона ? контрасты между сезонами будут наименьшими. При максимальном угле наклона различия в тепловой энергии, достигающей Земли, между летними и зимними сезонами будут наибольшими. Этот эффект происходит синхронно в северном и южном полушариях и зависит от широты. Он мал у экватора и имеет максимум у полюсов. Так, средняя инсоляция летом на широте 45° изменяется на 1,2% на каждый градус изменения угла ?, а амплитуда инсоляции (при амплитуде этого угла за последние 500 тыс. лет в 2,6°) составляет примерно 3%. Однако для широты 65° одному градусу изменения угла наклона оси соответствует изменение инсоляции на 2,5%. Амплитуда же инсоляции для этой широты составит уже 6,5%. Таким образом, в период максимальных углов наклона земной оси ледники должны отступить, а интенсивность цирукуляции атмосферы увеличиться; при уменьшении угла ? наоборот. В ближайшем будущем (рис. 10, б) следует ожидать уменьшения угла наклона оси, что приведет к наступлению ледников и уменьшению контрастов между сезонами.


Рис. 10. Изменение параметров земной орбиты и наклона оси вращения за последние 500 тыс. лет

Третий параметр, который влияет на величину S0 и климат, — прецессия орбиты. Эффект влияния данного фактора с периодом порядка 21 тыс. лет проявляется в одной фазе в северном и южном полушариях и не зависит от широты. В настоящее время Земля и Солнце ближе всего находятся друг от друга в январе (лето в южном полушарии). Но 10 тыс. лет назад это происходило в июле. Следовательно, еще через 10—11 тыс. лет картина станет обратной: летом южного полушария Земля будет дальше от Солнца, а летом северного ближе. В результате лето южного полушария и зима северного полушария станут еще холоднее, а зима южного полушария и лето северного — несколько теплее. Временной ход индекса, характеризующего прецессию орбиты, приведен на рис. 10, в.

На рис. 11 приведен временной ход суммарной инсоляции, вычисленной Бреккером и Ван Донком в 1970 г. для трех широтных кругов (45°, 55° и 65° с. ш.) за последние 500 тыс. лет. Данные позволяют сделать вывод, что чередование ледниковых-межледниковых эпох удивительно хорошо согласуется с периодами колебания параметров земной орбиты и наклона оси Земли. При учете всех трех факторов амплитуды изменения инсоляции составили около 5% относительно средних летних значений, что весьма много. Это равноценно изменению инсоляции вследствие уменьшения солнечной постоянной примерно на те же 5%.

Изменения инсоляции такой величины вполне могут объяснить колебания климата в течение последних 500 тыс.— 1 млн. лет. Устойчивого уменьшения инсоляции на несколько процентов достаточно, чтобы объяснить появление крупных оледенений и их ослабление. Во всяком случае, на рис. 11 отчетливо видно совпадение увеличения инсоляции с климатическим оптимумом 8—10 тыс. лет назад, а уменьшение — с последним ледниковым периодом. Согласуются и другие эпохи потепления и похолодания климата в прошлом. Детальные расчеты советских специалистов показали, что очередной минимум инсоляции, который почти на 5% ниже современной величины инсоляции, будет наблюдаться через 11 тыс. лет.

Анализируя эпохи оледенения Земли, следует иметь в виду, что изменение орбитальных параметров Земли и наклона ее оси вращения должно было отразиться на широтных контрастах температуры, что в свою очередь должно повлиять на характер циркуляционных процессов в атмосфере. Поэтому строгого соответствия периодов минимальной инсоляции и максимального оледенения может и не быть. К тому же на этот механизм накладывается влияние и других факторов.

Однако из всех естественных причин, вызывающих изменения климата, колебания параметров земной орбиты и как следствие инсоляция — наиболее реальные и более или менее ясно понимаемые климатообразующие факторы[1]. На основании экстраполяции рассмотренных параметров можно сделать вывод о том, что ход естественных процессов приближает нас к новому ледниковому периоду, который может наступить через несколько тысяч лет. Сейчас Земля находится в фазе межледниковья и приближается к эпохе оледенения со средней скоростью уменьшения инсоляции порядка 0,2—0,4% за тысячу лет.



Рис. 11. Временной ход летней инсоляции за последние 500 тыс. лет

Вторая группа факторов, относящаяся к астрономическим и влияющая либо на S0, либо на внутриатмосферные механизмы, — процессы на самом Солнце. Данная группа факторов относится к проблеме, получившей в последние годы название «солнечно-земные связи в погоде и климате». И хотя эта проблема одна из старейших, она до сих пор принадлежит к числу остродискуссионных и имеет как горячих приверженцев, так и непримиримых противников. Однако противников признания влияния солнечно-атмосферных связей на погоду и климат становится все меньше, а их аргументация слабеет на фоне появления новых экспериментальных и теоретических работ, подтверждающих наличие таких связей.

На Солнце существует много процессов, характеризующих его активность. Но наибольшее внимание всегда уделялось солнечным пятнам как признаку солнечной активности, т. е. они имеют самый длительный ряд наблюдений. Средний диаметр солнечных пятен около 37 тыс. км, а наибольший — до 245 тыс. км. Средняя температура в них почти на 2000 К ниже, чем эффективная температура фотосферы. Магнитное поле солнечных пятен много выше, чем в целом для диска Солнца, а полярность лидирующего пятна в биполярной группе противоположна полярности следующего за ним пятна.

В последние годы появились научные работы, в которых делается попытка на основе магнитно-гидродинамической теории объяснить существование циклов солнечных пятен. Такая работа, в частности, выполнена А. С. Мониным. Имеются, однако, и другие идеи, связывающие цикличность в появлении солнечных пятен с аномалиями в поле гравитации, создаваемыми планетами Солнечной системы.

Ниже мы воспользуемся данными о солнечных пятнах для характеристики истории климата. Но при этом все же следует помнить, что при объяснении физических механизмов влияния солнечной активности на погоду и климат необходимо обращаться и к другим признакам активности Солнца, наблюдения за которыми организованы сравнительно недавно или даже в самые последние годы.


Рис. 12. Характеристика циклов солнечной активности, выраженная в числах Вольфа

Впервые солнечная активность по солнечным пятнам была проанализирована в 1843 г. астрономом Г. Швабе, По данным наблюдений за 1826—1843 гг. он установил 10-летний цикл в поведении солнечных пятен. Но их существование было замечено раньше. Так, в Китае было засвидетельствовано наличие больших солнечных пятен на Солнце по крайней мере в XV столетии. В то же время Г. Галилей отметил период отсутствия солнечных пятен около 1610 г. Р. Вольф ввел некоторый комбинированный индекс солнечных пятен, получивший название чисел Вольфа. Он построил временной ход чисел с 1700 по 1847 г. С 1848 г. по настоящее время этот ряд непрерывно пополняется.

Кроме того, по историческим записям и радиоуглеродному анализу срезов деревьев числа Вольфа были восстановлены примерно за последнюю тысячу лет. Оказалось, что они варьируют от 0 до 10 в годы минимума и от 50 до 100 и более в годы максимума солнечной активности (ежедневные вариации колеблются между 0 и 355 или даже больше). В среднем длина цикла пятен оказалась равной 11 годам, хотя она варьирует от 8,5 до 14 лет между соседними минимумами и от 7,3 до 17 лет между соседними максимумами. В 1784—1797 и 1843—1856 гг. длина цикла была 13 лет. Солнечным циклам дана нумерация. Так, с минимума 1755 до минимума 1766 г. был первый цикл, 20-й цикл — с 1964 по 1976 г. Сейчас наблюдается 21-й цикл солнечных пятен, который, по-видимому, является одним из наиболее активных. На рис. 12 приведены солнечные циклы с 1755 по 1978 г. Неоднородность циклов видна даже на глаз, а в деталях это обнаруживается строгими методами анализа. Кроме 11-летней цикличности, можно заметить и более длительные периоды. Так, группа 1, 2, 3 и 4-го циклов сходна с группой 17, 18, 19, 20-го циклов, что дает 180-летнюю периодичность. Группы 5, 6, 7-го и 12, 13, 14-го циклов также сходны, что дает 80-летний цикл солнечных пятен. Их наличие выявляется и более строгими методами статистического анализа.

Если принять во внимание магнитные характеристики солнечных пятен, то на основе этого признака объединяют циклы попарно, т. е. считается, что каждый нечетный цикл имеет положительную полярность, а каждый четный — отрицательную. В сумме нечетная и четная пара циклов дает 22-летний цикл солнечной активности.

Впервые 22-летний цикл, по-видимому, был введен в 1908 г. Хейгом. В последнее время эта идея была существенно развита в работах А. И. Оля и других ученых. Она стала одной из наиболее признанных методик прогноза солнечной активности, разработанной А. И. Олем. На рис. 13 показаны осредненные характеристики чисел Вольфа с 1050 г., восстановленные по радиоуглероду 14С, а также кривая солнечных циклов за период наблюдений с 1700 г. Хорошо видно, что периоду климатического оптимума в X—XIII вв. (1100—1250 гг.) соответствовал максимум чисел Вольфа, малому ледниковому периоду, который был ярко выражен в 1450—1700 гг., — минимум. Более детально в числах Вольфа выделяются минимумы Спорера и Маундера в 1460—1550 и 1645—1715 гг. Им отвечали наиболее холодные интервалы времени малого ледникового периода. Похолодание в 1812—1921 гг. также совпадает с минимумом солнечных пятен.


Рис. 13. Характеристика солнечной активности по числам Вольфа (W), восстановленным по данным радиоуглеродного анализа за последнюю 1 тыс. лет.

1 — наиболее теплые и холодные периоды; 2 — числа Вольфа

Однако есть и некоторые отклонения. Так, в 1600 г. отмечается небольшой максимум солнечных пятен. Выше говорилось, что в ряде мест Европы в то время был холодный климат, который соответствовал одному из максимумов наступления альпийских ледников. По-видимому, эта часть рисунка нуждается в уточнении, поскольку и по наблюдениям Г. Галилея около 1610 г. солнечные пятна отсутствуют[2]. Следует заметить, что наступление и отступление альпийских ледников несколько сдвинуты относительно фаз минимума и максимума солнечных пятен. Так, максимум наступления альпийских ледников падает на 1760—1790 гг., а в горах Кебнекайсе в Северной Швеции на 1780 г. Норвежские и исландские ледники достигли максимального развития в 1740—1750 гг. Максимум в 1850—1860 гг. был отмечен в Исландии, Норвегии, Северной и Южной Америке.

Это лишний раз свидетельствует о сложности и многообразии действующих факторов, которые накладывают свой отпечаток на климат. Объяснять все климатические изменения одной солнечной активностью нельзя, точно так же, как нельзя и отвергать ее. Однако в укрупненных показателях связь колебаний солнечных пятен в последнем тысячелетии с колебаниями климата прослеживается, и это не позволяет легко отвергнуть связь изменений солнечной активности с изменениями климата.

Для более короткопериодических колебаний следует обратиться к многочисленным поискам связей изменения осадков, температуры, давления, ветра, повторяемости засух и других явлений с более короткими циклами солнечной активности — 11, 22, 80-летним и др. Таких исследований было выполнено много. Иногда эти связи достаточно хорошо характеризовали 11-летний цикл, иногда на передний план выступал 22-летний цикл. В одних районах они были положительными, в других — отрицательными. Отмечались случаи, когда после периода хорошей корреляции индексов солнечной активности (чисел Вольфа или индексов Кр и Ар) с теми или иными характеристиками климата наступали периоды резкого нарушения связей.

Все это породило закономерную неуверенность в таких связях и даже полное отрицание их. Для скептицизма были основания, по крайней мере в силу двух причин. Первая заключается в том, что в ряде случаев вслепую искались коэффициенты корреляции между числами Вольфа и любыми характеристиками не только погоды и климата, но и совершенно случайных явлений. Вторая причина объясняет до некоторой степени первую и связана с отсутствием в прошлом серьезных исследований по изучению физических механизмов влияния солнечной активности на погоду и климат. Без знания таких механизмов или хотя бы научно аргументированных гипотез их существования поиски статистических связей вслепую не могут дать существенного сдвига в понимании проблемы. В настоящее время в этом направлении сделано много. Но прежде чем перейти к этому вопросу, рассмотрим вкратце связи между солнечной активностью и климатом.

На основе анализа индексов, характеризующих возмущающий потенциал гравитационного взаимодействия таких планет, как Земля, Меркурий, Венера, Марс, Луна, Сатурн, Юпитер, Нептун, установлены периодичности, которые близки к периодам солнечной активности. Так, периоды 5,5; 10,4; 11,1; 11,8; 89,5; 179,2 лет соответствуют названным выше циклам солнечной активности. Следовательно, в основе физической природы солнечной активности (хотя солнечные пятна и числа Вольфа далеко не полностью характеризуют солнечную активность), как и в основе колебаний параметров земной орбиты, лежит возмущающее влияние поля гравитации вследствие взаимного расположения планет Солнечной системы. Правда, эта точка зрения иногда и оспаривается в пользу магнитно-гидродинамических процессов внутри Солнца.

Для глобальной приземной температуры воздуха ее корреляция с 11-летним циклом солнечных пятен меняется от отрицательной к положительной от 1958—1963 к 1974—1975 гг. Наблюдалась положительная корреляция полезной потенциальной энергии северного полушария с 11-летним циклом солнечной активности за 1880—1972 гг. Она несколько ухудшалась в 30—40-е годы и в начале 70-х годов.

В Центральной Англии в июле температура у поверхности была в фазе с 22-летним солнечным циклом с 1750 по 1830 г. и с 1860 по 1880 г. После 1880 г. связь оказалась лучше с 11-летним циклом. Периоды нарушений были между 1830—1860 и после 1880 г.

Температуры в тропиках имели отрицательную корреляцию с 11-летним циклом до 1920 г. и положительную до 1950 г. Связь нарушилась между 1920—1925 гг.

В Аделаиде (Австралия) наблюдалась отрицательная корреляция с 22-летним циклом до 1922 г., затем нарушилась. Уровень воды в озере Виктория, являющийся хорошим индикатором осадков, имел положительную корреляцию с 11-летним циклом с 1880 по 1930 г. Затем связь нарушилась, а после 1950 г. вновь восстановилась, но уже как отрицательная. За 1888—1973 гг. (кроме 1923—1943 гг.) была установлена хорошая корреляция между западновосточным смещением центра Исландского минимума и 22-летним циклом солнечной активности.

Таких примеров немало. Они могут быть дополнены связью солнечной активности с косвенными характеристиками климата и климатическими аномалиями. Так, для ряда пунктов была установлена хорошая корреляция чисел Вольфа с числом гроз. В 1888—1924 гг. для Сибири коэффициент корреляции был 0,88. Для других районов мира он в основном не превышал 0,3—0,4.

В последние годы установлена достаточно надежная корреляция содержания озона с солнечной активностью. Она имеет серьезное физическое обоснование. В настоящее время трудно установить надежность такой связи за длительный период из-за ограниченного времени наблюдений за озоном. Однако установлено, что в период солнечных вспышек резко меняется концентрация озона.

В Советском Союзе Т. В. Покровской, В. А. Дьяковым и другими исследователями установлена связь вероятности появления засух с фазами солнечной активности. Для европейской территории СССР, например, и Западной Сибири эти связи находятся в противофазе.

Имеющиеся фактические данные по проблеме солнечной активности могут свидетельствовать, по крайней мере, о следующем. Связь между климатическими явлениями и 11 и 22-летним циклами солнечной активности существует. Однако она не однозначна в силу большого количества факторов, влияющих на климат и действующих одновременно.

Установленные связи могут иметь различный знак в различных регионах и в различные периоды времени. В значительной мере это зависит от того, на фоне каких естественных процессов происходит воздействие солнечной активности.

Природа неоднозначности связей, их изменений во времени и пространстве не может быть понята и использована для объяснения изменений климата в прошлом, а тем более для прогноза будущего климата, пока не будут вскрыты физические механизмы связи солнечной активности с погодой и климатом.

Проблема выяснения физических механизмов, объясняющих связь между процессами на Солнце и изменениями погоды и климата, была поставлена в ряд физических проблем совсем недавно, менее 10 лет назад. Рассмотрим основные идеи, обосновывающие те или иные физические механизмы, и их аргументацию.

Солнечная активность, помимо солнечных пятен, проявляется в широком спектре колебаний электромагнитного излучения, начиная от жесткого ультрафиолетового, видимого, инфракрасного, радиоизлучения и кончая корпускулярным излучением, магнитными бурями и др. Некоторые из этих характеристик солнечной активности связаны с солнечными пятнами.

Перечислим главные физические механизмы солнечно-атмосферных связей. Прежде всего — это изменения интегральной солнечной постоянной и излучения Солнца в узких спектральных интервалах ультрафиолетового и видимого излучения Солнца, на которые приходится максимум излучаемой солнечной энергии.

В различные периоды определения солнечная постоянная колебалась от 1,75 до 2,03 км/см2?мин. В последние годы Национальной администрацией США по аэронавтике и космическим исследованиям (НАСА) была предпринята серия попыток измерить солнечную постоянную с высотных самолетов (потолок ~12 км), баллонов (~27—35 км), ракет (~82 км), космических кораблей Маринер-6 и Маринер-7 за пределами земной атмосферы. В результате величина солнечной постоянной для всех инженерных и в первую очередь космических расчетов принята равной 1,940±0,03 кал/см2?мин (1356±20 Вт/м2). Величина неопределенности, таким образом, составляет около 1,5%, значит, мы не можем утверждать, что изменений интегральной солнечной постоянной не происходит.

В самые последние годы измерения солнечной постоянной проводились на спутниках серии Маринер и Нимбус. В 1969 г. во время полета к Марсу спутника Маринер-6 измерялась интегральная солнечная постоянная. Ее колебания были порядка 0,1% и находились на пределе точности измерений. В 1975 г. на спутнике Нимбус-6, в 1978 г. на Нимбус-7 эти измерения были выполнены с большей точностью. Они показали наличие колебаний солнечной постоянной с амплитудой порядка 0,15% (апрель 1980 г.). Периодичность их — от нескольких дней до нескольких недель и более. Была установлена связь колебаний солнечной постоянной (0,1—0,2%) с числом солнечных пятен по ежедневным данным. Хотя эти величины малы, но для длительных климатических изменений их следует принимать в расчет.

Более ранние измерения К. Я. Кондратьева и Г. А. Никольского позволили установить зависимость (она оказалась нелинейной) между изменениями солнечной постоянной и числами Вольфа в 11-летнем цикле солнечной активности. Интегральная солнечная постоянная может и не меняться на большом удалении от Земли и тем более вблизи Солнца. Однако вследствие других физических механизмов солнечная активность может влиять на ионизацию верхних слоев атмосферы и образование окислов азота, которые, с одной стороны, воздействуют на фотохимию озона, а с другой — непосредственно меняют характер поглощения ультрафиолетовой радиации. В результате меняется не астрономическая, а метеорологическая солнечная постоянная. Но причина этих изменений все же — солнечная активность.

К настоящему времени в США проведены эксперименты по определению со спутников спектральных характеристик солнечной постоянной практически во всех интервалах солнечного излучения за пределами атмосферы. В спектральных интервалах с центром 0,12; 0,18 и 0,26 мкм с помощью спутников обнаружены вариации в интенсивности солнечного излучения. Амплитуды их составили соответственно 7; 37,6; 0,9 %.

Таким образом, есть основания говорить о возможных изменениях интегральной и спектральной характеристик солнечной постоянной. Влияние изменения интегральной солнечной постоянной может проявить себя непосредственно. Подобно тому как изменение альбедо нашей планеты на 1—2% или аналогичное изменение параметров земной орбиты непосредственно меняют инсоляцию, а следовательно, и климат, изменение солнечного излучения может вызвать подобный же эффект.

Один из признаков солнечной активности — солнечные вспышки, которые обычно происходят внутри района, окруженного большой биполярной группой солнечных пятен, и продолжаются от нескольких минут до нескольких часов. Их повторяемость имеет положительную корреляцию с 11-летним циклом солнечной активности. Максимум повторяемости вспышек совпадает с максимумом солнечных пятен, вторичный максимум вспышек отмечается через несколько лет после главного максимума солнечных пятен. Космические лучи и ультрафиолетовое излучение от вспышек достигают Земли примерно за 8 мин. и производят интенсивную ионизацию верхней атмосферы, начиная со слоя D и ниже. Этот эффект приводит к образованию окислов N, меняющих спектральное поглощение солнечной радиации атмосферы и метеорологическую солнечную постоянную. Проявляется этот эффект регионально.

Кроме того, протонные вспышки на Солнце порождают корпускулярные потоки, которые проникают в верхнюю атмосферу в зоне геомагнитных полюсов. Эти частицы, помимо ионизации верхних слоев, проникают вплоть до уровня 10 мб и ниже и поглощаются атмосферой. В связи с этим происходит дополнительное нагревание верхней атмосферы в зоне полярных шапок, ее «выпучивание» и отток массы, что, по мнению некоторых ученых, приводит к углублению Исландского минимума и усилению интенсивности западно-восточного переноса. В частности, такой точки зрения придерживается известный чехословацкий геофизик В. Буха. Подобный же эффект производят космические лучи галактического происхождения. Их интенсивность также зависит от 11-летнего цикла и более длительных солнечных циклов, от высоты, магнитной широты и изменений магнитной структуры Солнца, т. е. от секторной структуры магнитного поля Солнца.

Вариации изменения интенсивности космических лучей исследованы достаточно хорошо в 18, 19 и 20-м 11-летних циклах примерно с 1952 по 1972 г. Так, их интенсивность в период минимума солнечных пятен в 1954 г. была на 20% ниже, чем в период максимума в 1958 г. Максимум ионизации атмосферы в результате действия космических лучей приходится на высоты 12—20 км.

Поскольку активность Солнца проявляется и в изменениях магнитного поля, в последнее время введено несколько индексов, характеризующих магнитную активность Солнца, среди них наиболее распространенные — Кр, Ар, С, Ср и др.

Мы упомянули о влиянии солнечной активности на атмосферу не непосредственно, а через озон. Поясним кратко этот механизм. Озон — бесцветный газ с характерным запахом, который образуется в стратосфере при воздействии на молекулярный кислород ультрафиолетовой радиации Солнца. Двухатомная молекула O2 расщепляется на атомарный кислород, который затем вступает в реакцию с другими молекулами O2. В результате образуется трехатомное соединение кислорода O3 — озон.

Суммарное содержание озона невелико, не более 0,5% массы атмосферы. Максимум концентрации озона по объему находится на высоте порядка 34 км, максимальная плотность — на высоте 25 км. Еще в конце XIX в. высказывалось предположение, что наблюдаемый для волн короче 0,3 мкм «обрыв» солнечного излучения, приходящего к Земле, обусловлен поглощением ультрафиолетовой радиации озоном. В начале XX в. гипотеза была надежно обоснована.

По этой причине спектральные изменения солнечной активности в полосах поглощения озона даже при практической неизменности солнечной постоянной могут влиять на его фотохимию. Уже отмечалось, что в интервале 0,17—0,21 мкм зарегистрированы случаи изменения интенсивности солнечного излучения, связанные с солнечной активностью. Даже если допустить, что интенсивность солнечного излучения в этом узком интервале изменится на 100%, то интегральная солнечная постоянная — всего лишь на 0,01%. Однако изменения излучения в этом интервале вызовут колебания концентрации озона, что заметно изменит тепловой режим стратосферы (порядка Градусов и десятков градусов) и незначительно — температуру вблизи поверхности (десятые доли градусов и градус).

Колебания концентрации озона влияют на биологическую систему человека, особенно кожу, которая весьма чувствительна к радиации с длинами волн порядка 0,3 мкм. Избыток радиации вызывает старение кожи, ожоги. Расчеты показывают, что среднее сокращение озона на 5% приводит к увеличению ультрафиолетовой радиации в области 0,3 мкм на 5—10%. На климат это влияет мало, но биологический эффект велик и еще не совсем оценен.

Для климата важны и другие малые примеси, образование которых связано с солнечной активностью. Наша атмосфера в основном состоит из N и O2, при обычных условиях не соединяющихся. Но под действием ионизации вследствие солнечной активности N с O2 соединяется. В результате происходят следующие фотохимические реакции:

NO + O3 ? NO2 + O2,

NO2 + O ? NO + O2,

NO2 + hv (< 0,4 мкм) ? NO + О.

Таким образом, непрерывно разрушаются как сам озон, так и атомарный кислород.

Однако окислы N сами в состоянии поглощать ультрафиолетовую солнечную радиацию. Потому и уменьшается метеорологическая солнечная постоянная. Предполагается, что увеличение повторяемости космических лучей солнечного и галактического происхождения, связанное с солнечной активностью, может влиять на климат более кардинально, чем только через озонный слой.

Остановимся еще на одном механизме влияния солнечной активности на погоду и климат. В последнее время было установлено, что высокоэнергичные солнечные корпускулярные потоки могут проникать до уровня 300 мб и производить ионизацию. Образующиеся в результате ионы становятся ядрами кристаллизации.

За счет разности упругости насыщения водяного пара надо льдом и водой на этих ядрах сублимируется водяной пар из окружающего воздуха и появляются облака типа перистых. Подобный механизм был промоделирован А. А. Дмитриевым в специальных камерах. Обработав большое количество данных, он показал, что в период солнечной активности действительно чаще наблюдаются перистые облака. Всплеск рентгеновского излучения на Солнце вызывает увеличение облачности в обоих полушариях на 0,25—0,5 балла. Это может привести к уменьшению радиационного баланса в среднем на 1—2%. В отдельных районах, в частности в полярных, после сильных вспышек рентгеновских лучей облачность возрастает на 2—3 балла, меняя радиационный баланс на 10—20% (примерно на 12 Вт/м2). Температура при этом снижается от 1,1° в умеренных широтах до 3°С в Полярном бассейне.

Выполненные автором данной работы и его коллегами численные эксперименты с простейшими климатическими моделями и более полными моделями общей циркуляции атмосферы показали, что климатический эффект от влияния перистой облачности весьма заметен.

Примеры показывают, что процессы на Солнце могут влиять на погоду и климат как непосредственно, так и косвенно. И здесь астрономические факты тесно переплетаются с возбуждением солнечной активностью внутриатмосферных процессов.

В 1979 г. в США были опубликованы данные о детальном изучении процессов на Солнце и солнечной активности американскими космонавтами с 14 мая 1973 г. по 8 февраля 1974 г. на космическом корабле Скайлеб. Эти исследования проводились с помощью различных телескопов в интервале длин волн от 2 до 7000 А в период минимума солнечной активности. Специальное оборудование позволило изучать процессы в солнечной короне, хромосфере, фотосфере и в переходном слое между хромосферой и короной.

Согласно современным представлениям, температура поверхности фотосферы достигает порядка 6050 К, повышаясь к центру Солнца до 15 млн. К. Температура в хромосфере, толщина которой порядка 2 тыс. км, сначала несколько падает в нижнем слое до 4300 К, а затем растет. В переходном слое толщиной несколько сот километров температура резко растет, достигая в короне нескольких миллионов градусов. Во время вспышек солнечной активности высота хромосферы может подниматься на 15—16 тыс. км в сторону короны.

Проведенные наблюдения показали, что даже в период минимума солнечных пятен в 11-летнем цикле было зарегистрировано очень много проявлений солнечной активности, особенно в конце мая-июне, в августе-сентябре, ноябре-декабре 1973 г. и январе 1974 г. В атмосфере Солнца (в хромосфере и короне) были зарегистрированы активные зоны, размеры которых сопоставимы с площадью поверхности Земли. Температура в этих зонах на несколько миллионов градусов выше, чем в окружающих районах.

Очень сильно менялось магнитное поле. Достаточно, например, сравнить: магнитное поле Земли у полюса составляет 0,7 Гс, а вблизи экватора 0,3 Гс, в среднем для Солнца от 1 Гс в зоне полюсов до 20—25 и даже 200 Гс в хромосфере. Магнитное поле солнечных пятен, по размерам соизмеримых с Землей, — 3 тыс. Гс. Со Скайлеба были зарегистрированы исключительно интенсивные процессы на Солнце во всех участках исследуемого спектра.

<<< Назад
Вперед >>>

Генерация: 7.392. Запросов К БД/Cache: 3 / 1
Вверх Вниз