Книга: Самое грандиозное шоу на Земле

Ферменты

<<< Назад
Вперед >>>

Ферменты

Теперь, увидев, как зародышевые листки играют в оригами, складываясь в эмбрион, давайте заглянем внутрь клетки. Там мы столкнемся с тем же принципом самосборки — самоизгибания и самосвертывания, но в существенно меньшем масштабе — в масштабе белковой молекулы. Белки исключительно важны. Чтобы воздать должное этой важной молекуле, я начну с провокационного рассуждения. Мне нравится рассуждать о том, какой странной могла бы быть жизнь на других планетах, но одно или два свойства жизни я все же считаю универсальными. Жизнь, возникнув, развивается в рамках процессов, имеющих отношение к дарвиновскому естественному отбору генов. Она во многом основана на белках или других молекулах, которые, подобно белкам, умеют складываться во всевозможные многообразные формы. Белковые молекулы являются виртуозами «автооригами», но размерный класс их мира гораздо меньше, чем в мире эмбриональных тканей, где мы уже побывали. На показательных выступлениях по использованию локальных условий белковые молекулы стали бы безоговорочными победителями.

Белки представляют собой цепочки мелких молекул, которые называются аминокислотами. Эти цепочки, как и слои зародышевых клеток, имеют свойство складываться строго определенным образом, но в мире меньшего масштаба. Природные белки состоят из двадцати типов аминокислот. Кстати, это свойство на других планетах может быть и другим, потому что во Вселенной больше аминокислот, но все земные белки выстроены именно из двадцати. Как у них получается «автооригами»? Аминокислотные цепочки белков, просто следуя законам химии и термодинамики, спонтанно, сами собой сворачиваются в определенные трехмерные конфигурации. Я написал было — «завязываются», но в отличие от миксин (да, позволю себе такое сравнение) белки не завязываются в узлы. Когда мы обсуждали вирусы, мы встречались с трехмерными структурами белков, получившими название третичных. Они получаются путем сложения и сворачивания аминокислотных цепочек. Каждая последовательность аминокислот диктует и строго определенную картину свертывания. Так что последовательность аминокислот в цепочке, сама по себе определяемая последовательностью «букв» в коде ДНК, навязывает и третичную структуру белку[110].

А форма третичной структуры, в свою очередь, имеет химические следствия исключительной значимости.

Движения «автооригами» (теперь это сворачивающиеся и складывающиеся белковые цепочки) определяют химические законы. Те же законы определяют углы между связывающимися атомами. Представьте себе ожерелье из неправильной формы магнитов. Оно не будет обрамлять прекрасную шею прекрасным овалом. Вместо этого магниты перепутаются, сцепляя углы с выемками и соединяя одну плоскую грань к другой. В отличие от белковой цепочки, форма магнитного «украшения» непредсказуема, потому что каждый магнит притягивается другими и может сцепиться с любым из них. Но для цепочки из белков дело обстоит иначе: спонтанно свернутая в глобулу аминокислотная последовательность ведет себя совсем не так, как ожерелье из магнитов.

Нам неизвестны все нюансы химических закономерностей, которые сдвигают вместе те или иные части аминокислотной цепи, но эти закономерности познаваемы в принципе, они в принципе выводимы из этой самой последовательности. И здесь, употребляя выражение «в принципе», я не имею в виду ничего таинственного. Невозможно угадать заранее грань игральной кости, но мы полагаем, что результат будет зависеть от силы и направления броска, а также знания некоторых дополнительных данных о сопротивлении воздуха, и так далее. Хорошо известно (и не раз продемонстрировано), что определенная последовательность аминокислот сворачивается всегда одинаково или несколькими альтернативными способами. Для эволюции важно то, что последовательность аминокислот определяется согласно правилам генетического кода последовательностью букв (триплетов нуклеотидов) того или иного гена. И хотя химикам не так-то просто предсказать, как отразится мутация в гене на форме белка, следует понимать, что это принципиально возможно. Любая конкретная мутация изменит форму фермента совершенно определенным образом (или создаст набор нескольких альтернативных форм). А естественному отбору только это и нужно. Ему нет нужды знать, каким образом эта форма получена. И если она отразится на выживании, ген с данной мутацией либо выиграет, либо проиграет в конкуренции за доминирование в генофонде. И какое дело, понимаем мы или нет, как именно сворачивается данный белок?

Мы знаем, что формы белков неисчислимо разнообразны, и знаем, что они предопределены генетическими последовательностями. Но почему это так важно? Отчасти потому, что белки являются непосредственным строительным материалом тела. Так, волокнистые белки, например коллаген, соединяются в прочные жгуты, называемые связками и сухожилиями. Большинство белков все же не волокнистые, они имеют характерную глобулярную форму. Глобулы снабжены мелкими выступами (или зубчиками), и их взаиморасположение обусловливает ферментную или каталитическую роль белков.

Катализатором называют химическое вещество, которое ускоряет химическую реакцию иногда в миллион или миллиард раз; при этом сам катализатор остается неизменным: реакция успешно прошла, и катализатор снова свободен и снова готов к работе. Особый класс катализаторов составляют белковые катализаторы, или ферменты (энзимы). Они фантастически капризны — предельно разборчивы в выборе химической реакции. Или наоборот: химические реакции в клетке разборчивы в выборе фермента. Ведь многие реакции в клетке настолько медленные, что без помощи ферментов от них бы не было никакого толку. Но с ферментами они протекают очень быстро, так что продукт можно выдавать на-гора.

Мне нравится представлять это так. Вот химическая лаборатория с сотнями бутылочек и колб, и в каждой простое или сложное вещество, раствор или порошок. Химик, желающий провести опыт, снимает с полки пару-тройку бутылочек, берет оттуда щепоть одного, каплю другого, смешивает в отдельной пробирке (может и подогреть) — и реакция начинается. А сколько еще могло бы произойти химических реакций в этой лаборатории, если бы все имеющиеся там вещества не были изолированы?

Живая клетка сродни гигантской химической лаборатории с огромными запасами химикатов. Но они не разделены стеклянными стенками. Все перемешано, будто какой-то громила ворвался в лабораторию и расколотил все колбы. Ужасно, правда? Было бы ужасно, если бы все вещества вступали в реакцию друг с другом в любых комбинациях. Однако этого не происходит. Или происходит, но с ничтожной скоростью. Если только там нет фермента. Тогда все полки с бутылочками становятся ненужными, ведь вещества и так не собираются вступать в реакцию, пока не появится правильный фермент. Иными словами, если нужно, чтобы вещества А и Б вступили в химическую реакцию, можно хранить их в отдельных закупоренных бутылочках, а можно слить сотню разных веществ в котел и потом добавить фермент, катализирующий реакцию А и Б. Следует понимать, что аналогия с разгромленной лабораторией не слишком хороша. Ведь в клетке имеется инфраструктура из мембран, которые разграничивают пространство, где протекают реакции. Так что в некоторой степени мембраны исполняют роль колб и флаконов.

Смысл этого раздела главы в том и заключается, что «правильность» фермента достигается за счет правильной формы, а она, в свою очередь, получается за счет определенной генетической последовательности (последовательности нуклеотидов в гене), а естественный отбор работает именно с генами, поддерживая или отбрасывая их. В «супе», который наполняет клетку, плещутся, роятся и вертятся тысячи молекул. Молекула А, может, и желала бы прореагировать с молекулой Б, но для этого им нужно встретиться и занять правильную позицию по отношению друг к другу. Это очень маловероятно, если только не вмешается правильный фермент. И у него, обладающего своеобразной формой, сложившейся подобно магнитному ожерелью, есть необходимые выступы и углубления нужной конфигурации.

У каждого фермента имеется так называемый активный центр (или активный сайт). Обычно это зубец или карман, форма которого придает специфические свойства ферменту. Слово «зубец» здесь, наверное, не совсем уместно. Пожалуй, лучше сравнить его с электрической розеткой. Это примерно то, что мой друг зоолог Джон Кребс назвал «великим штепсельным заговором»: различные страны внедряют собственные типы вилок и розеток, и в итоге английские вилки не подходят к американским или французским розеткам, и так далее. Активные центры на поверхности белковых молекул подобны розеткам, в которые можно вставить только вилки определенного типа. Но если в арсенале «штепсельных заговорщиков» всего полдюжины типов вилок и розеток (тем не менее этого достаточно, чтобы создать путешественнику неудобства), то типы «вилок» ферментов гораздо, гораздо более разнообразны.

Представим, как с помощью фермента образуется химическое соединение АБ, — очевидно, путем присоединения молекулы А к молекуле Б. В одну часть активного центра фермента идеально вставляется молекула А, будто деталь в пазл. Вторая часть активного центра так же идеально подходит для молекулы Б, куда она прицепляется, становясь в позицию, которая требуется для соединения А и Б. Выступы и выемки крепко держат А и Б, угол для реакции совершенно точен — молекулам А и Б ничего не остается, кроме как вступить в реакцию. Образуется соединение АБ, высвобожденное из объятий фермента, а сам фермент готов снова примерить к своим выемкам и выступам новые молекулы А и Б. В клетке могут быть целые армии одинаковых ферментных молекул, работающих подобно роботам на конвейерной ленте, выпускающей продукт клеточной индустрии АБ. А если в клетке на конвейере заработает другой фермент, то пойдет выпуск другой продукции — АВ, БД или ЕЖ. Конечные продукты будут различными, хотя сырье всегда одно и то же. А есть и другие ферменты — они занимаются не соединением молекул друг с другом, а расщеплением молекул на части. Некоторые из таких ферментов вовлечены в процесс пищеварения, также они являются своего рода биологическими моющими средствами. Но так как в этой главе обсуждается построение эмбрионов, то нас все же интересуют строительные ферменты, посредники химического синтеза. (Один из таких процессов показан на цветной вклейке 12.)

Здесь у читателей могут возникнуть вопросы. Все это прекрасно: зубцы и выступы, вилки и розетки, активные центры, у которых сродство только к одним типам молекул и которые в миллион раз ускоряют единственную реакцию — да, все это хорошо. Слишком хорошо, чтобы быть правдой. Как получаются молекулы фермента нужной формы? Какова вероятность того, что сразу объявится фермент, у которого есть и «вилки», и «розетки» для А и Б, причем эти высокоспецифичные неровности сразу поставят А и Б напротив друг друга, заставив любоваться друг на дружку под нужным углом, а потом еще и соединиться? Вероятность ничтожна, если представлять себе целиком сразу весь пазл — или, если вам нравится аналогия, сразу все сети «штепсельного заговора». Но на самом деле следует представить вот что: постепенные улучшения. Как в других случаях, когда перед нами встает загадка образования сложных структур, нельзя думать, что их совершенство в настоящий момент существовало всегда.

Молекулы ферментов ускоряют нужные реакции в миллиард раз. Это выходит у них благодаря совершенной форме, приспособленной для определенной реакции. Но так ли нужна такая скорость? Возможно, и ускорения в миллион раз хватило бы. Или в тысячу раз. Даже стократно. Да что тут говорить — и в десять раз, и даже в два раза быстрее, чем исходная реакция. Даже за это улучшение естественный отбор сразу ухватился бы. Работа фермента улучшалась постепенно, его форма совершенствовалась, меняясь от самой простой, почти без зубцов, до филигранно подогнанных друг к другу деталей. Постепенность означает, что на каждом шаге, даже шажке, происходило какое-то заметное улучшение. А заметность его предполагает, что не мы, а естественный отбор должен обратить на него внимание, даже если для нас это улучшение неразличимо.

Вот так все и работает. Лучше не придумаешь! Клетка является живой химической фабрикой, способной выпускать колоссальное число соединений в любом количестве, стоит только добавить необходимый фермент. И как этот выбор делается? Путем включения нужного гена. Если клетка представляется котлом с химикатами, не вступающими в реакцию друг с другом, то в клеточном ядре, напротив, работает только малое число генов. Если ген включен (например, мы говорим о клетке печени), то последовательность нуклеотидов, то есть генетический код, определит последовательность аминокислот (помните магнитное ожерелье?), она определит форму, в которую свернется белок, а в этой форме появятся нужные зубцы и впадины, которые неизбежно заставят молекулы в «котле» соединиться требуемым образом. В каждой клетке, за исключением красных кровяных телец, имеется ядро, содержащее набор генов для всех ферментов. Но также в каждой клетке «активированы» немногие гены. Так, в клетках щитовидной железы вырабатываются ферменты для производства тироидного гормона, и соответственно, работают только гены этих ферментов. Точно так и с любыми другими клетками. Конфигурация клетки, ее поведение, ее участие в спектакле — все определяется идущими в клетке химическими реакциями. Поэтому весь ход эмбрионального развития управляется генами. Именно гены диктуют последовательность аминокислот, определяющую третичную структуру белков, именно она формирует «розетки» и «штепсели» в активном центре. Он, в свою очередь, контролирует клеточную химию, а это вызывает спонтанно организованное, подобное поведению скворцов в стае, поведение клеток в процессах эмбрионального развития. Таким образом, разница генов может вызвать изменения хода эмбрионального развития и, следовательно, изменения облика и поведения взрослых особей. А впоследствии выживание и репродуктивный успех этих особей повлияют на выживание генов, которые некогда обеспечили их выживание и репродуктивный успех. И в этом заключается естественный отбор.

Эмбриональное развитие кажется сложным (так оно и есть), но все видится проще, если разложить его на более простые составляющие, которые, по сути, являются самоорганизующимися процессами, управляемыми во всех случаях местными взаимодействиями. Другое дело — понять, как клетки, в которых содержится набор генов, решают, какой из генов следует задействовать в определенный момент. Попробуем ответить на этот вопрос.

<<< Назад
Вперед >>>

Генерация: 0.825. Запросов К БД/Cache: 0 / 0
Вверх Вниз